Nangle Consulting Associates. Inc.

Environmental Engineering and Land Use Planning

45 Dan Road, Suite 115, Canton, Massachusetts 02021

September 28, 2016

email: nangle@ncaenv.com

Mr. Hans Jensen Strategic Planning and Community Development City of Somerville 93 Highland Avenue Somerville, MA 02143

RE: Environmental Studies
Peer Review Status Report #2
343 – 349, and 351 Summer Street
Somerville, Massachusetts

Mr. Jensen,

On 12 September 2016, this office received a draft copy of the "Limited Subsurface Investigation Report" pertaining to completion of environmental studies at the 343-351 Summer Street subject property by the firm of EnviroTrac Ltd., (EnviroTrac). This document contains the results obtained from the field and laboratory characterization of soil and groundwater quality, identified as Task 03, within EnviroTrac's original work plan, while the document itself is identified as Task 04 and represents the overall completion of proposed site activities. Accordingly, this second status report has been prepared to summarize our comments and recommendations pertaining to the conclusions and/or opinions presented within the draft findings report prepared by EnviroTrac.

As summarized in our 29 August 2016 interim Peer Review Status Report #1, Nangle Consulting Associates, Inc. (NCA) has observed the performance of field activities at the site, which included the placement of eight (8) test borings, five (5) of which were completed as groundwater monitoring wells; the excavation of exploratory trench/test pit excavations; removal of two (2) abandoned underground storage vessels; completion of a groundwater sampling event and performance of instrumental survey to support the determination of groundwater flow direction. Since our last correspondence, the results of the laboratory analyses performed on soil and groundwater samples collected by EnviroTrac during their field activities have been reviewed and the results of the EnviroTrac sampling program represent the primary focus of this submittal.

Following our initial review of the EnviroTrac draft report, a memorandum requesting clarification of several issues was sent to Mr. Robert Bird, the Licensed Site Professional (LSP) for EnviroTrac, on 16 September 2016. A copy of this document, as well as the response from Mr. Bird are presented in Attachment A. In addition, this information has been incorporated into the comments provided herein.

A review of Section 4.0 of EnviroTrac's *Draft Limited Subsurface Investigation Report*, (Attachment B) indicates that ten (10) findings and/or conclusions were presented as a part of their environmental studies. A review of these findings revealed that conclusions one (1) through four (4) and number ten (10) are statements for which we have no further comments. For the remaining points we have summarized our peer review according to each of the conclusions rendered by EnviroTrac as follows:

EnviroTrac Conclusions: #5 & #6

- 5. One of the tanks (Tank #1) was damaged during the test pitting activities, resulting in approximately 20-30 gallons of oily liquid being released to the soil in the vicinity of the tank. MassDEP-approved Immediate Response Actions (IRA) were completed on August 12, 2016, under Release Tracking Number 3-33735, including the removal of approximately 13 cubic yards of oil-impacted soil;
- 6. Based on the UST removal, impacted soil excavation and post-excavation soil data collected to date, the release of oil from the UST has been remediated to meet the MCP requirements for closure of the release with a Permanent Solution that should be submitted on or before October 7, 2016 to meet MCP regulatory deadlines.

As summarized above, during the placement of exploratory test pits, in the area of historic underground storage, a tank was "damaged" resulting in the release of petroleum and the need for Immediate Response Actions (IRA). This release condition was assigned Release Tracking Number (RTN) 3-33735 and EnviroTrac is of the opinion that the sampling of excavation boundaries is sufficient to support the achievement of a Permanent Solution (PS). A review of the results obtained from eight (8) boundary samples does suggest that if the data is averaged the performance standards of a PS could indeed be met. However, this assumes that each of the compounds detected in the boundary samples are attributable to the leakage/release of tank contents, which upon further review is not the case. Specifically, several of the compounds detected in soil sample S-3 are not consistent with waste oil, as described in the following excerpt from our September 14, 2016 memorandum to Mr. Robert Bird of EnviroTrac.

Sample S-3 contained several Polynuclear Aromatic Hydrocarbons (PAHs) above their respective Reportable Concentration (RC) values, and Massachusetts Department of Environmental Protection's (MDEP's) background standards. We understand that averaging the data could meet the requirements of a Permanent Solution for the petroleum release conditions; however, the PAH distribution detected in sample S-3 differs from what was observed in the stockpile sample associated with the spill. Further, several of the PAHs detected in sample S-3 and not in the stockpile would not be expected in a waste oil sample, nor were they detected at the additional seven (7) sampling locations (S series) above applicable RC values. Accordingly, we would appreciate clarification regarding the opinion that these exceedences are addressed by the two (2) hour notification.

In response to the above, Mr. Bird provided the following comment:

The elevated PAH in S-3 area not considered to have been addressed in the 2-hour notification for a sudden release of oil. A separate 120-day notification will be provided for the PAH and lead in soil.

Mr. Hans Jensen September 28, 2016 Page 3

It is to be noted that the presence of fill material and apparent building foundations were identified immediately adjacent to the former storage vessels during their removal. It is likely that Polynuclear Aromatic Hydrocarbons (PAHs) are associated with this fill condition and further investigation is necessary to confirm the source, nature and extent of what may not be an actual release of oil and/or hazardous materials (OHM). More specifically, several of the PAHs detected in sample S-3 may be attributable to contaminants in the fill unit, particularly asphalt fragments, which would not be considered as a Reportable Condition.

EnviroTrac Conclusion: #7

7. Soil samples collected from the soil borings were analyzed for EPH with target analytes and the MCP 14 metals. Only lead in the composite soil sample collected from B-102 at a depth of 0-10 feet, and benzo(a)pyrene in the 0-10 feet composite sample B-104 exceeded applicable MCP S-1 Reportable Concentrations;

Similar to the above described condition, asphalt was noted as being present within the shallow fill layer at B-102, where an exceedance of the RC standard for lead was identified. As stated in the EnviroTrac report, composite samples were collected from the 0-10' depth interval at borings B-101, B-102 and B-104. This sampling method and the corresponding depth interval of ten (10) feet were selected to enable the precharacterization of potential excess excavated material that will be generated during site redevelopment. While it is common within the industry to use composite sampling techniques, this is usually performed for homogeneous, or similar types of soil/fill. As evidenced from a review of Figure 1, asphalt was present within the shallow fill unit at approximately 2.5 to 3.3 feet from surface grade. This fill material was "composited" with underlying native soils and as such represents the mixing of distinctly different material in the sample. To determine if the exceedance of the lead standard was attributable to asphalt, EnviroTrac was asked if the samples from 0-5 feet and 5-10 feet were still available for further evaluation. This would enable the separate analysis of the upper fill unit to identify whether or not an actual Reportable Condition exists. If not, EnviroTrac was asked if they were planning to perform any further investigations of this potential source condition. In addition, it is customary to do a TCLP analyses if soil samples containing lead concentrations are above 100 mg/kg, as described in the following excerpt from our 12 September 2016 memorandum.

The 0-10 foot composite sample from B-102 where a lead concentration of 431 mg/kg was detected contains asphalt within the 2.7 - 3.3 depth interval. As the sample hold time has not been exceeded, do you still have soil samples in-house for the 0-5 and 5-10 foot depth intervals that could be run to isolate this potential reportable condition? In addition, is it planned to do TCLP analyses for the sample containing the lead exceedance for purposes of evaluating future soil management requirements?

EnviroTrac has indicated that these samples were not available and no further investigation would be undertaken at this time, however, TCLP analysis is being performed. It is our professional opinion that further investigation of this condition is warranted to determine whether or not an actual reporting condition exists at B-102.

Benzo(a)pyrene was detected in the 0-10 foot composite sample from B-104 at a concertation of 2.7 mg/kg, in comparison to the reporting standard of 2.0 mg/kg. This slight exceedance was detected during the analysis for MDEP Extractable Petroleum Hydrocarbons (EPH), which in part is comprised of PAH target compounds including Benzo(a)pyrene. A similar, though more comprehensive analysis

Mr. Hans Jensen September 28, 2016 Page 4

for PAHs, as semi-volatile organic compounds, was also performed upon the sample from B-104. This analysis did not reveal an exceedance for Benzo(a)pyrene, nor were any additional exceedences detected across the site. Similar to the issue involving the use of composite sampling over wide depth intervals, Mr. Bird was asked if further sampling was to be performed, as described in the 12 September 2016 memorandum excerpt, presented below.

It is noted that the Semi-Volatile analyses of the 0-10 foot composite sample from B-104 did not detect Benzo(a)pyrene above the applicable RC value, while the Extractable Petroleum Hydrocarbons (EPH) analysis did reveal a slight exceedance. As the sample hold time has passed and several additional sample analyses were below the RC value, is it planned to reevaluate this location to confirm the repeatability and representativeness of the single exceedance?

EnviroTrac has indicated that no further investigation of this issue is proposed at this time. As such, the representativeness and reportability of this data point does, in our professional opinion, warrant further investigation, to determine whether a Reportable Condition does indeed exist.

EnviroTrac Conclusion: #8

8. The owner of the Subject Property has a regulatory obligation to notify MassDEP of the two reportable conditions, i.e. lead in soil at 431 mg/kg at B-104 and benzo(a)pyrene at 2.7 mg/kg at B-102, within 120 days of receipt of knowledge of such; and,

For the reasons outlined under our response to Conclusion #7, the owner of this property may wish to further evaluate the PAH and lead exceedances detected within the composite samples to determine whether these conditions are subject to the 120-day reporting obligation.

EnviroTrac Conclusion: #9

9. Groundwater samples were collected from each of the five (5) newly installed monitoring wells and the five (5) existing monitoring wells and analyzed for VOC using EPA Method 8260C, EPH, VPH and dissolved MCP 14 Metals. None of the method analyte concentrations exceeded the applicable MCP GW-2 Reportable Concentrations.

We agree that the results of the groundwater sampling event did not reveal any exceedances of applicable regulatory standards. However, it is noted that the evaluation of site hydrology revealed very varied groundwater flow contours leading to an inability to accurately determine groundwater flow direction. This may be attributable, at least in part, to the penetration of several different perched, or seepage zones atop potentially confining strata. As shown on Figure 2, several of the well screen intervals were set across multiple seepage zones. This is a difficult condition to quantify, particularly during initial site investigations, due to the presence of semi confining silts and clays, at varied depth intervals. This is also likely attributable to the lack of sufficient groundwater recharge at MW-108 during the groundwater sampling event, that limited the extent of sample collection, as described by EnviroTrac on Page 3 of their report.

- Well MW-108 did not recharge sufficiently to allow for stabilization prior to sampling.
- Due to insufficient well volume, the groundwater sample from well MW-108 was submitted for EPH analysis only.

Mr. Hans Jensen September 28, 2016 Page 5

As stated above, this hydrologic condition, while influencing the ability to determine groundwater flow direction, is not considered to be a concern with respect to the results of the laboratory analytical program for groundwater. Further, the potential influence of the subsurface MBTA utility corridor is also noted.

Upon your review of the summary correspondence please feel free to contact us at your convenience.

Very Truly Yours,

Nangle Consulting Associates, Inc.

Jeffrey A. Nangle, P.E., L.S.P.

Nangle Consulting Associates, inc

FIGURES

Environmental Engineering and Land Use Planning

LOG OF BORING: B-101 LOG OF BORING: B-102 LOG OF BORING: B-104

Client Maggiore Companies Site Completion Depth 10 feet 10 feet Completion Depth 10 feet Geologist Frank Morrissey, Lauren Main Cepth (feet) Completion Solic Description Completion Depth 10 feet Completion Depth 10 feet Geologist Frank Morrissey, Lauren Main Cepth (feet) Completion Depth 10 feet Completion Depth 10 feet Geologist Frank Morrissey, Lauren Main Completion McD 14 Metals Solic Description Completion McD 14 Metals Solic Description Solic Description Completion McD 14 Metals Solic Description Solic Description Completion McD 14 Metals Solic Description Completion McD 14 Metals Solic Description Solic Description Solic Description Solic Description Completion McD 14 Metals Solic Description Solic Description Solic Description Solic Description Completion McD 14 Metals Solic Description Solic Description Solic Description Solic Description Completion McD 14 Metals Solic Description Solic Des	Date 8/8/2016	Drilling Company Technical Drilling Services	5	Monitoring Well Construction Details Boring was not completed as a monitoring well				
Maggiore Wakefield 361 Summer Street Somerville, Massachusetts Geologist Frank Morrissey, Lauren Main Difilling Data Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPTION Depth (feet) Recovery Blow Count (per PID (normer) SOIL DESCRIPT								
Prank Morrissey, Lauren Main Dopin Frank Morrissey, Lauren Main Dopin Frank Morrissey, Lauren Main Dopin Fracovery Blow Count (per PID (ppmv)	Maggiore Wakefield			B-101 (comp.) submitted for VOCs by 8260, VPH, EPH, and				
Depth (feet) Recovery Blow Count (per PID (ppm/)	Somerville, Massachusetts							
Depth (feet) Recovery Blow Count (per (ppm/) (ppm/) (ppm/) 1 30			<i>l</i> lain					
Depth (feet) (inches) 6 (ppmw)		<u> </u>		COLL DESCRIPTION				
Abbreviations Abbreviations Abbreviations Abbreviations Active Abbreviations Abbreviations Abbreviations Abbreviations Abbreviations BDL Abbreviations Abbreviations Abbreviations BDL Abbreviations Abbreviations BDL Abbreviations BDL BDL BDL Abbreviations BDL BDL BDL BDL Abbreviations BDL BDL BDL BDL BDL BDL BDL BD	Depth (feet)							
BDL 2-3-3-Asphalt fragments 3-3.3: Dry-moist, black-dk brown f-SAND, some gravel and organics 3-3.5: Dry-moist, brown-tan f-SAND, some gravel, silt, and clay 3-3-5: Dry-moist, brown-tan f-SAND, some gravel, silt, and clay 5-6.7: no recovery 5-6.7: no recovery 6.7-8.9": Dry-moist, brown-tan f-SAND, some silt and gravel 8-9-10": Moist, brown-gray m-c SAND, some gravel 8-9-10": Mo			-	0 - 3": Asphalt				
Abbreviations dk dark lt light sl slightly	3 _	-	BDL	3-3.3': Dry-moist, black-dk brown f-SAND, some gravel and organics				
BDL 6.7-8.9': Dry-moist, brown-tan f-SAND, some silt and gravel BDL 8.9-10': Moist, brown-gray m-c SAND, some gravel Abbreviations dk dark lt light sl slightly not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse	F	40 –	_ <u>_</u>					
Abbreviations dk dark lt light sl slightly not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse	Γ -	-	L	6.7-8.9': Dry-moist, brown-tan f-SAND, some silt and gravel				
Abbreviations dk dark It light sl slightly not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse	_ 8 _	-	10000000	CO 40% Maint having graying CAND game grayel				
Abbreviations dk dark lt light sl slightly not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse	F			o.s-10. Moiss, brown-glay m-c SAND, Some graver				
dk dark It light sl slightly not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse	1 10		Abbreviati	ons				
sl slightly not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse								
not applicable BDL below detection limit Sand abbreviations f fine m medium c coarse								
BDL below detection limit Sand abbreviations f fine m medium c coarse								
f fine m medium c coarse								
m medium c coarse Envirolrac								
c coarse Envirolrac								
Environmental Services				oarse Envirolrac				
				Environmental Services				

			ADMINISTRATE DV 30	200 TOOL	Procedure reserving the second control of th				
Date		Drilling C			Monitoring Well Construction Details				
3/8/2016 Tech			Drilling Services	S	Boring was not completed as a monitoring well				
Client Maggiore Companies	Drilling M Geoprobe								
Site Maggiore Wakefield 351 Summer Street Somerville, Massachu	ısetts	Completi 10 feet Geologis	·	Main	Laboratory Samples B-102 (comp.) submitted for VOCs by 8260, VPH, EPH, and MCP 14 Metals				
			ing Data	viairi					
	Depth (feet)		Blow Count (per 6")	PID (ppmv)	SOIL DESCRIPTION				
	_ 1 _ 2 3 4 5 6 7 8 9 10	30		BDL BDL BDL	0-5' 0 - 3": Asphalt 0-2.7': no recovery 27-3.3': Asphalt fragments 3.3-3.4': Dry-moist, dk brown-black f-SAND, some organics 3.4-4.6': Dry-moist, dk brown f-m SAND, some gravel 4.6-4.7': Rock fragments 4.7-5': Dry-moist, tan f-SAND, some gravel 5-10' 5 - 7.5': no recovery 7.5-7.8': Moist, dk brown f-SAND, some gravel 7.8-8.3': Dry-moist, tan f-SAND, some gravel 7.8-8.3': Dry-moist, tan f-SAND, some rock fragments 8.3-9.2': Moist, gray-tan sitty CLAY				
	10			Abbrevia dk It sl BDL Sand ab f m	ations dark light slightly not applicable below detection limit breviations fine medium coarse				

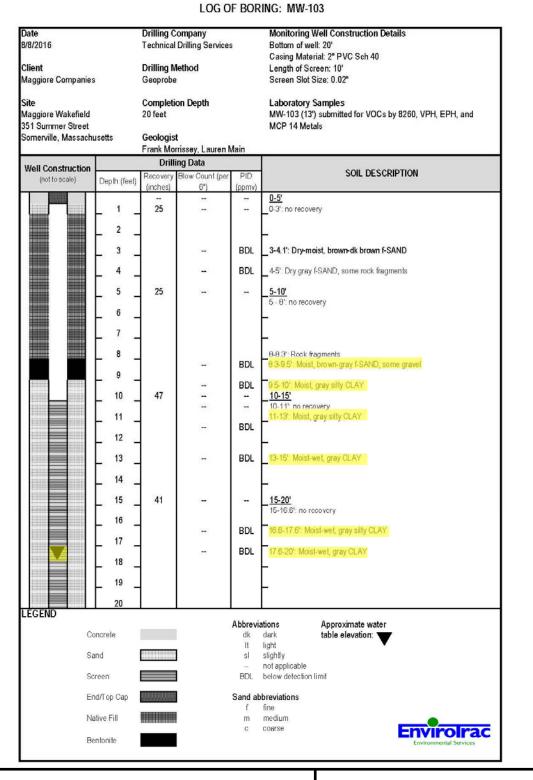
Di	rilling M	Drilling Services	6	Boring was not completed as a monitoring well
	eoprobe			
10 ts G	D feet eologist		<i>M</i> ain	Laboratory Samples B-104 (comp.) submitted for VOCs by 8260, VPH, EPH, and MCP 14 Metals
nth (feet) R	Drillin ecovery	ng Data	PID (ppmv)	SOIL DESCRIPTION
1 _	 27	1	1	0-5' 0-2.8': no recovery
3 _		-	BDL 5.0	2.8-3.3°; Dry, brown f-SAND, some rocks and rocts 3.3-5°; Dry-moist, tan-gray f-SAND, some rocks
5 _	38	-	BDL 	
7 8		_	BDL	7:7-10': Dry-moist, tan-brown-tan f-m SAND, some gravel
9 10				_
			sl	ations dark light slightly not applicable below detection limit
	1 _ 2 _ 3 _ 4 _ 5 _ 6 _ 7 _ 8 _ 9 _ 9	Frank Mor Drillin oth (feet) Recovery (inches) 1	Frank Morrissey, Lauren Morris	Frank Morrissey, Lauren Main Drilling Data

f fine m medium c coarse

ENVIROTRAC BORING LOG COMPARISION 343 - 351 SUMMER STREET SOMERVILLE, MASSACHUSETTS

NANGLE CONSULTING ASSOCIATES, INC.
Environmental Engineering and Land Use Planning

45 Dan Road, Suite 115, Canton, Massachusetts 02021


LEGEND

REFERENCE:

Envirotrac Draft Limited Subsurface Investigation Report dated September 8, 2016

Envirolrac

Date: SEPT 2016	Figure
Job No: 778.02	1

LOG OF BORING: MW-108

Drilling Company Technical Drilling Services Monitoring Well Construction Details 8/8/2016 Bottom of well: 20' Casing Material: 2" PVC Sch 40 **Drilling Method** Length of Screen: 10' Screen Slot Size: 0.02" Maggiore Companies Geoprobe Completion Depth Laboratory Samples Maggiore Wakefield 20 feet MW-108 (13.5') submitted for VOCs by 8260, VPH, EPH, and 351 Summer Street MCP 14 Metals Somerville, Massachusetts Geologist

	Frank Mo	rriccov I auron I	Main					
-			vium					
33	Doggword		PID	SOIL DESCRIPTION				
Depth (fee	(inches)	6")	(ppmv)					
_ 1	29		-	0-5' 0-2.6': no recovery				
3	1	-	BDL	2.6-3.7'-Dry, tan f-SAND, some leaves				
- 4	-	-	BDL	3.7-5': Dry-moist, tan f-SAND, some gravel and clay				
- 5 6	35	-	-	5-10' 5-7' no recovery				
7]	-	BDL	7-7.5': Dry-moist, tan f-SAND, some gravel and brick fragments				
- 8	4	_	BUL	7.5-10*. Dry-moist, lan-gray f-m SAND, some gravel				
- 9 - 10	48	_						
11]	-	 PDI	10-11": no recovery 11-11.8": Moist-wet, lan f-m SAND, some silt and clay				
- 12	4	-	BDL	11.8-15". Moist-wet, gray silty CLAY				
13	1							
_ 15	42	-		15-20' 15-16.5': no recovery				
-	-	-	BDL	16.5-20' Moist-wet, gray CLAY				
18]			_				
- ¹⁹	-			-				
			Abbrevia					
Concrete]	dk It sl	derk table elevation: Vight slightly				
Screen			BDL	not applicable below detection limit				
End/Top Cap			f	breviations fine				
		i	m c	medium coarse Environmental Services				
	_ 1 _ 2 _ 3 _ 4 _ 5 _ 6 _ 7 _ 8 _ 9 _ 10 _ 11 _ 12 _ 13 _ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 Concrete Sand Screen	Drill Depth (feet) Recovery (inches)	Drilling Data Depth (feet) Recovery (inches) G*)	Depth (feet) Recovery (inches) Blow Count (per (inches) 6") Count (per (inches) Count (per (inches) C") C") Count (per (inches) C") C") Count (per (inches) C") C")				

ENVIROTRAC MONITORING WELL COMPARISION 343 - 351 SUMMER STREET SOMERVILLE, MASSACHUSETTS

NANGLE CONSULTING ASSOCIATES, INC.
Environmental Engineering and Land Use Planning
45 Dan Road, Suite 115, Canton, Massachusetts 02021

LEGEND

REFERENCE: Envirotrac Draft Limited Subsurface Investigation Report dated September 8, 2016

Date: SEPT 2016	Figure
Job No: 778.02	2

Nangle Consulting Associates, inc

ATTACHMENT A

Environmental Engineering and Land Use Planning

Nangle Consulting Associates, Inc.

Environmental Engineering and Land Use Planning

45 Dan Road, Canton, Massachusetts 02021

MEMORANDUM

TO: Robert H. Bird, L.S.P. (EnviroTrac Ltd.)

FROM: Jeffrey A. Nangle, P.E., L.S.P

DATE: September 16, 2016

SUBJECT: Limited Subsurface Investigation

343-351 Summer Street

Before we prepare our final peer review comments for the Limited Subsurface Investigation Report, we would like to follow up on a few issues for your review and consideration.

- 1. The 0-10 foot composite sample from B-102 where a lead concentration of 400 mg/kg was detected contains asphalt within the 2.7 3.3 depth interval. As the sample hold time has not been exceeded, do you still have soil samples in-house for the 0-5 and 5-10 foot depth intervals that could be run to isolate this potential reportable condition? In addition, is it planned to do TCLP analyses for the sample containing the lead exceedance for purposes of evaluating future soil management requirements?
- 2. Sample S-3 contained several Polynuclear Aromatic Hydrocarbons (PAHs) above their respective Reportable Concentration (RC) values, and Massachusetts Department of Environmental Protection's (MDEP's) background standards. We understand that averaging the data could meet the requirements of a Permanent Solution for the petroleum release conditions; however, the PAH distribution detected in sample S-3 differs from what was observed in the stockpile sample associated with the spill. Further, several of the PAHs detected in sample S-3 and not in the stockpile would not be expected in a waste oil sample, nor were they detected at the additional seven (7) sampling locations (S series) above applicable RC values. Accordingly, we would appreciate clarification regarding the opinion that these exceedences are addressed by the two (2) hour notification.
- 3. Is it correct to assume that the sample from 13 feet at B-103 was analyzed in anticipation that this depth corresponded to the soil / groundwater interface, which was later determined to be at 16.81 feet after well stabilization? Similar consideration applies to the sampling depths for MW-105 and MW-108.
- 4. It is noted that the Semi-Volatile analyses of the 0-10 foot composite sample from B-104 did not detect Benzo(a)pyrene above the applicable RC value, while the Extractable Petroleum Hydrocarbons (EPH) analysis did reveal a slight exceedance. As the sample hold time has passed and several additional sample analyses were below

email: nangle@ncaenv.com

Memorandum September 16, 2016 Page 2 of 2

the RC value, is it planned to reevaluate this location to confirm the repeatability and representativeness of the single exceedance?

From: Robert H. Bird, LSP
To: Matt Maggiore

Subject: FW: 343-351 Summer Street, Somerville, MA

Date: Thursday, September 22, 2016 3:03:08 PM

Attachments: 746.02 MM 2016 09 16.pdf

Matt,

Attached is the memo sent to me by Nangle and below are my responses to his questions.

Bob

From: Robert H. Bird, LSP

Sent: Tuesday, September 20, 2016 4:44 PM **To:** Jeffrey Nangle <jnangle@ncaenv.com>

Subject: 343-351 Summer Street, Somerville, MA

Hi Jeff,

Provided below is additional information for the issues raised in your September 16, 2016 memo:

- 1. No additional samples are available for analyses. The TCLP analysis has been requested and the results are pending.
- 2. The elevated PAH in S-3 are not considered to have been addressed in the 2-hour notification for a sudden release of oil. A separate 120-day notification will be provided for the PAH and lead in soil.
- 3. Yes.
- 4. No.

We look forward to receiving you final comments and moving forward with redevelopment of the property.

Thanks...

Bob

Robert H. Bird, LSP | Principal Hydrogeologist | EnviroTrac Ltd. | 2 Merchant Street Suite 2, Sharon MA 02067 781.793.0074 (Office) | 781.793.7877 (Fax) | 508.244.7111 (Cell) | robertb@envirotrac.com | \underline{vCard}

Solutions in Action - http://www.envirotrac.com

CONFIDENTIALITY: This e-mail (including any attachments) may contain confidential, proprietary and privileged information, and unauthorized disclosure or use is prohibited. If you received this e-mail in error, please notify the sender and delete this e-mail from your system.

Nangle Consulting Associates, inc

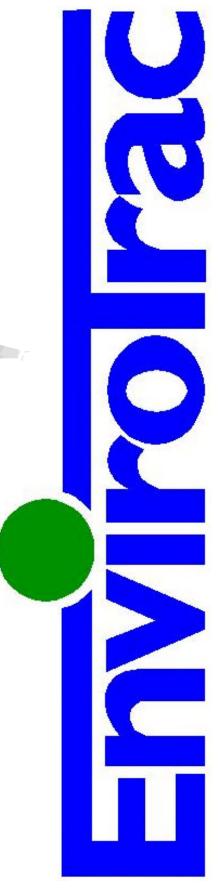
ATTACHMENT B

Environmental Engineering and Land Use Planning

LIMITED SUBSURFACE INVESTIGATION REPORT

Vacant Property 343-351 Summer Street Somerville, Massachusetts

September 8, 2016


Prepared for:

The Maggiore Companies 13 Wheeling Avenue Woburn, Massachusetts 01801

Prepared by:

EnviroTrac Ltd.
2 Merchant Street, Suite 2
Sharon, Massachusetts 02067

A Full Service Environmental Consulting and Contracting Firm

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Site Description	
2.0	SUBS 2.1	SURFACE INVESTIGATIONS	
	2.2	Test Pit Soil Investigation	
	2.3	Groundwater Sampling and Analyses	3
	2.4	Hydrogeologic Conditions	3
3.0	DISC 3.1 3.2	Soil DataGroundwater Data	4
	3.3	Groundwater Flow	
4.0	CON	CLUSIONS	5

FIGURES

Figure 1	Locus Map
Figure 2	Site Plan
Figure 3	UST Excavation and Sample Location Detail
Figure 4	Water Table Elevation Contour Plan – August 17, 2016

TABLES

Table 1	Summary of Soil Boring Analytical Data
Table 2	Summary of UST Area Soil Analytical Data
Table 3	Summary of Soil Stockpile Analytical Data
Table 4	Summary of Groundwater Analytical Data
Table 5	Summary of Monitoring Well Gauging Data
Table 6	Summary of Groundwater Geochemical Data

APPENDICES

Appendix A	Boring Logs
Appendix B	Soil Laboratory Reports
Appendix C	Groundwater Laboratory Report

1.0 INTRODUCTION

At the request of The Maggiore Companies (Maggiore), EnviroTrac Ltd. (EnviroTrac) has prepared this Limited Subsurface Investigation Report to document the methods and results of subsurface investigations conducted at 343-351 Summer Street (Subject Property) in Somerville, Massachusetts. The location of the property is depicted on the Locus Map (**Figure 1**). A Site Plan is provided as **Figure 2**.

1.1 Site Description

The Subject Property is comprised of four (4) parcels of land identified by the City of Somerville Assessor's office as Map #25, Block D, Lots #33 (343 Summer Street), #34 (345 Summer Street), #35 (349 Summer Street) and #36 (351 Summer Street). The four parcels total approximately 0.93 acres in a mixed-use commercial/residential section of Somerville. The parcels identified as 343-349 Summer Street are currently undeveloped but contain an air vent for the MBTA Red Line which runs beneath the southwestern portion of the parcels. The parcel at 351 Summer Street is currently used as a paved parking lot for the adjacent George Dilboy VFW Post #529.

Historically, the 351 Summer Street parcel was used as a gasoline filling station prior to the parcel being vacated to facilitate the construction of the MBTA Red Line beneath the property in the 1980s. The 343-395 Summer Street parcels had been the location of residential dwellings and associated parking.

2.0 SUBSURFACE INVESTIGATIONS

To document current environmental conditions in support of property acquisition and redevelopment, subsurface investigations were initiated on August 8, 2016. These investigations are documented in the following sections.

2.1 Subsurface Soil Investigation

On August 8, 2016, Technical Drilling Services, Inc. (TDS) of Leominster, Massachusetts advanced eight (8) soil borings (B-101 through B-1045, and MW-105 through MW-108) under the supervision of EnviroTrac personnel. All borings were advanced utilizing direct push methods with a Geoprobe™ rig. As shown in **Figure 2**, soil borings B-101, B-102, B-105, MW-106 and MW-107 were advanced in the paved parking area of the 351 Summer Street portion of the Subject Property. Borings B-101, B-102 and B-104 were advanced to a maximum explored depth of approximately 10 feet below ground surface (bgs) to assist in characterizing soil to be excavated during the anticipated construction activities. Borings MW-103, MW-105, MW-106, MW-107 and MW-108 were advanced to a depth of approximately 20 feet and were completed as two-inch diameter groundwater monitoring wells with 10 feet of well screen.

During the advancement of the soil borings, select soil samples were screened with a photoionization detector (PID) in accordance with the MassDEP jar headspace method. PID readings ranged from below the instrument detection limit (BDL) of 0.5 parts per million by volume (ppmv) to 5.0 ppmv.

Soil boring logs, which include lithologic and stratigraphic descriptions, PID results and monitoring well construction details, are included as **Appendix A**. Lithologic and stratigraphic descriptions

were based on soil samples collected from each boring at five-foot intervals using dedicated acetate soil sampling liners. The soil boring and monitoring wells locations are depicted on the Site Plan (**Figure 2**).

2.1.1 Soil Sampling and Analyses

Soil conditions encountered during soil boring activities were primarily sand, with traces of silt and gravel, overlying a gray clay. The sandy layer varied in thickness by boring location from 8 to 16.7 feet bgs.

Based on field observations and headspace screening results, a selected soil sample was obtained from each boring, placed into clean, appropriately preserved glassware and transported under a chain of custody to SGS Accutest Laboratories (SGS) of Marlborough, Massachusetts. Each soil sample was analyzed for extractable petroleum hydrocarbons (EPH) with target polycyclic aromatic hydrocarbons (PAHs) and the MCP 14 metals. Composite (0-10 feet bgs) soil samples from B-101, B-102 and B-104 were also analyzed for volatile organic compounds (VOC) by EPA Method 8260, semi-volatile organic compounds by EPA Method 8270, volatile petroleum hydrocarbons (VPH) with target analytes, polychlorinated biphenyls (PCB) by EPA Method 8082, specific conductivity, flashpoint, pH and reactivity.

Soil laboratory analytical results are summarized in **Table 1**. A copy of the soil sample laboratory report is included in **Appendix B**.

2.2 Test Pit Soil Investigation

On August 8, 2016, EnviroTrac monitored the completion of test pits as completed by Koster and Sons Construction, Inc. The test pits were completed to investigate the potential existence of an underground storage tank (UST) on the 349 Summer Street parcel. A historical (1934-1950) Sanborn Insurance Map showed the existence of a "gas tank" on the property and there was no available documentation that the UST had been removed from the property.

A series of trenches, approximately 5 feet wide and 7-8 feet deep were excavated using a backhoe. The locations of the test pit trenches are shown on **Figure 2**.

During the test pit activities, a UST was encountered and damaged by the backhoe. The top of the UST was approximately 2.5 feet bgs. The UST was 30 inches in diameter and 24 inches in length with a volume capacity of approximately 60 gallons. As the result of the UST containing oily liquid, approximately 20-30 gallons of liquid were released to the adjacent soil when the UST was damaged.

In response to the release, both the Massachusetts Department of Environmental Protection (MassDEP) and the Somerville Fire Department were notified. MassDEP assigned Release Tracking Number (RTN) 3-33735 to the Site. In accordance with a MassDEP-approved Immediate Response Action (IRA), approximately 13 cubic yards of oil-impacted soil was excavated by Strategic Environmental Services, LLC (SES) on August 12, 2016, from the vicinity of the damaged UST. The impacted soil was stockpiled on-site, awaiting disposal characterization and off-site disposal.

On August 12, 2016, during the excavation of impacted soil associated with the UST encountered on August 8, 2016, two small diameter buried pipes were observed exiting the excavation. Further excavation in the area of the piping identified a second small UST (Tank #2) approximately 6 feet

west of the first UST (Tank #1). Tank #2 was confirmed to be approximately the same size as Tank #1 with no evidence of releases or leaks from the UST observed. The contents of both tanks were removed and placed in two (2) 55-gallon drums for off-site disposal. After cleaning, the tanks were removed from the excavation and transported to the James G. Grant Co. tank yard for disposal.

On August 12, 2016, eight (8) soil samples, representative of the extent of the excavation in the vicinity of the two USTs, were obtained by EnviroTrac. The soil samples, identified as S-1 through S-8, as shown on **Figure 3**, were submitted to SGS for EPH and VPH analysis. A composite sample, representative of the stockpiled oil-impacted soil, was also obtained and submitted for analysis for soil disposal parameters. A sample of the contents of Tank #1 was also submitted to SGS for forensic fingerprint analysis. The laboratory results are summarized in **Table 2**. Copies of the UST soil laboratory reports are included in **Appendix B**.

2.3 Groundwater Sampling and Analyses

On August 17, 2016, groundwater samples were collected by EnviroTrac from the ten on-site monitoring wells (MW-1, MW-2, MW-3, MW-103, MW-105, MW-106, MW-107, MW-108, B-2/MW, and B-3/MW) using low-flow methodology with dedicated, disposable tubing. Prior to sample collection, each well, with the exception of well MW-108, was purged until groundwater geochemical parameters (temperature, pH, dissolved oxygen, oxidation-reduction potential, and conductivity) stabilized to facilitate collection of a representative sample. Well MW-108 did not recharge sufficiently to allow for stabilization prior to sampling.

Groundwater samples were field filtered and collected in pre-preserved containers provided by the laboratory. All groundwater samples were labeled in the field and transported to SGS under standard chain-of-custody protocol. Groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260, VPH, EPH and dissolved 14 MCP Metals. Due to insufficient well volume, the groundwater sample from well MW-108 was submitted for EPH analysis only. Groundwater data is summarized in **Table 4**. A copy of the groundwater laboratory report is included as **Appendix C**.

2.4 Hydrogeologic Conditions

Based on gauging data obtained by EnviroTrac personnel on August 17, 2016, the depth to water was measured to range from 10.41 feet below grade at MW-106 to 19.50 feet below grade at MW-108. Groundwater gauging data is summarized in **Table 5**.

A wellhead elevation survey was conducted on August 17, 2016 utilizing an assumed benchmark of 100 feet at the northeast corner of the MBTA vent pad. Utilizing the August 17, 2016 depth to water measurements and the top of casing elevations, relative water table elevations were calculated for each monitoring well. Water table elevation contours were modeled using the August 17, 2016 water table elevations. The water table elevation for monitoring well MW-108 was not utilized in calculating the contours due to limited recharge. The top of casing elevations are summarized in **Table 5** and a water table elevation contour map is presented as **Figure 4**.

3.0 DISCUSSION OF ANALYTICAL DATA

3.1 Soil Data

3.1.1 Soil Borings

The laboratory analysis of the soil samples obtained during the August 8, 2016 advancement of eight (8) soil borings on the Subject Property, as summarized in **Table 1**, report that the composite soil samples obtained for pre-disposal characterization (B-101, B-102 and B-104) contained no detectable concentrations of VOC, other than benzene at 0.001 milligram/kilogram (mg/kg) at B-102 and acetone (0.02 mg/kg) at B-104. No detectable VPH or PCB concentrations were reported in the pre-disposal characterization samples.

Pyrogenic polynuclear aromatic hydrocarbons were reported in each of the eight (8) soil samples, with the benzo(a)pyrene concentration (2.7 mg/kg) at B-104 in excess of the applicable MCP Reportable Concentration (RCS-1) of 2 mg/kg.

Metals were present in all collected soil samples, with the reported lead concentration at B-102 (431 mg/kg) the only metal reported in excess of the metal-specific RCS-1 reportable concentration. The RCS-1 concentration for lead is 200 mg/kg.

3.1.2 UST Area

The soil samples obtained to represent the extent of the excavation completed to remove the two USTs and soil impacted by the release of oily liquid from Tank #1 contained no detectable VPH concentrations. Extractable petroleum hydrocarbons were detected in seven of the eight UST excavation soil samples, with benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and phenanthrene reported at concentrations that exceeded applicable MCP Method 1 Soil Standards.

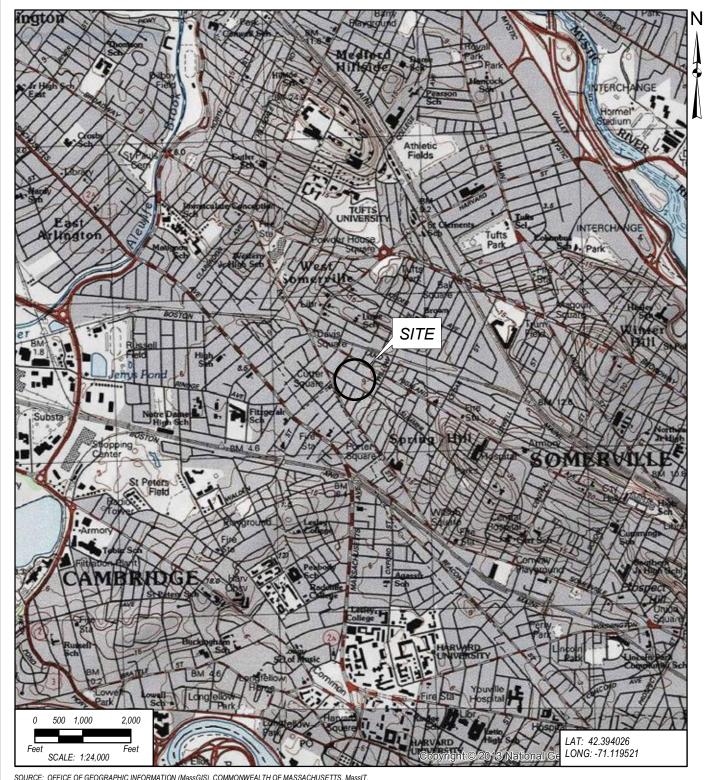
3.2 Groundwater Data

The groundwater samples collected on August 17, 2016, contained no detectable VPH or EPH concentrations. The only detected VOC was acetone which was detected at 14.5 micrograms/liter (ug/l) in well MW-103. Dissolved arsenic, selenium and zinc were reported in the groundwater at concentrations significantly below the applicable RCGW-2 Reportable Concentrations for the Subject Property.

3.3 Groundwater Flow

Based on the water table elevation contours depicted on **Figure 4**, no clearly discernable groundwater flow direction is evident. This is likely due to a number of factors, including observed site lithology comprised of shallow sandy fill overlying clay, which results in an apparent "semi-perched" water table. In addition, historical subsurface disturbance associated with the installation of the MBTA vent is likely.

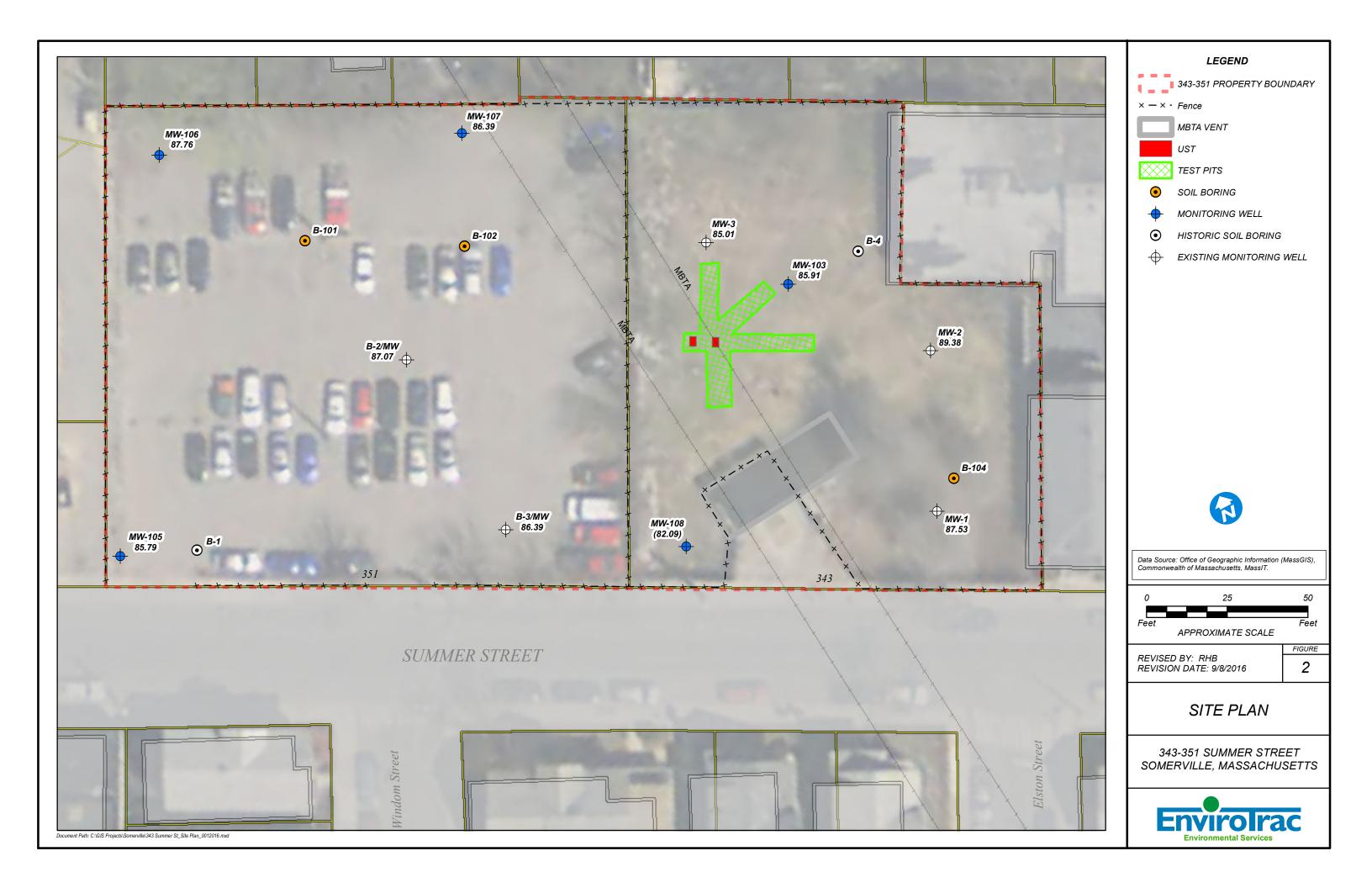
4.0 CONCLUSIONS

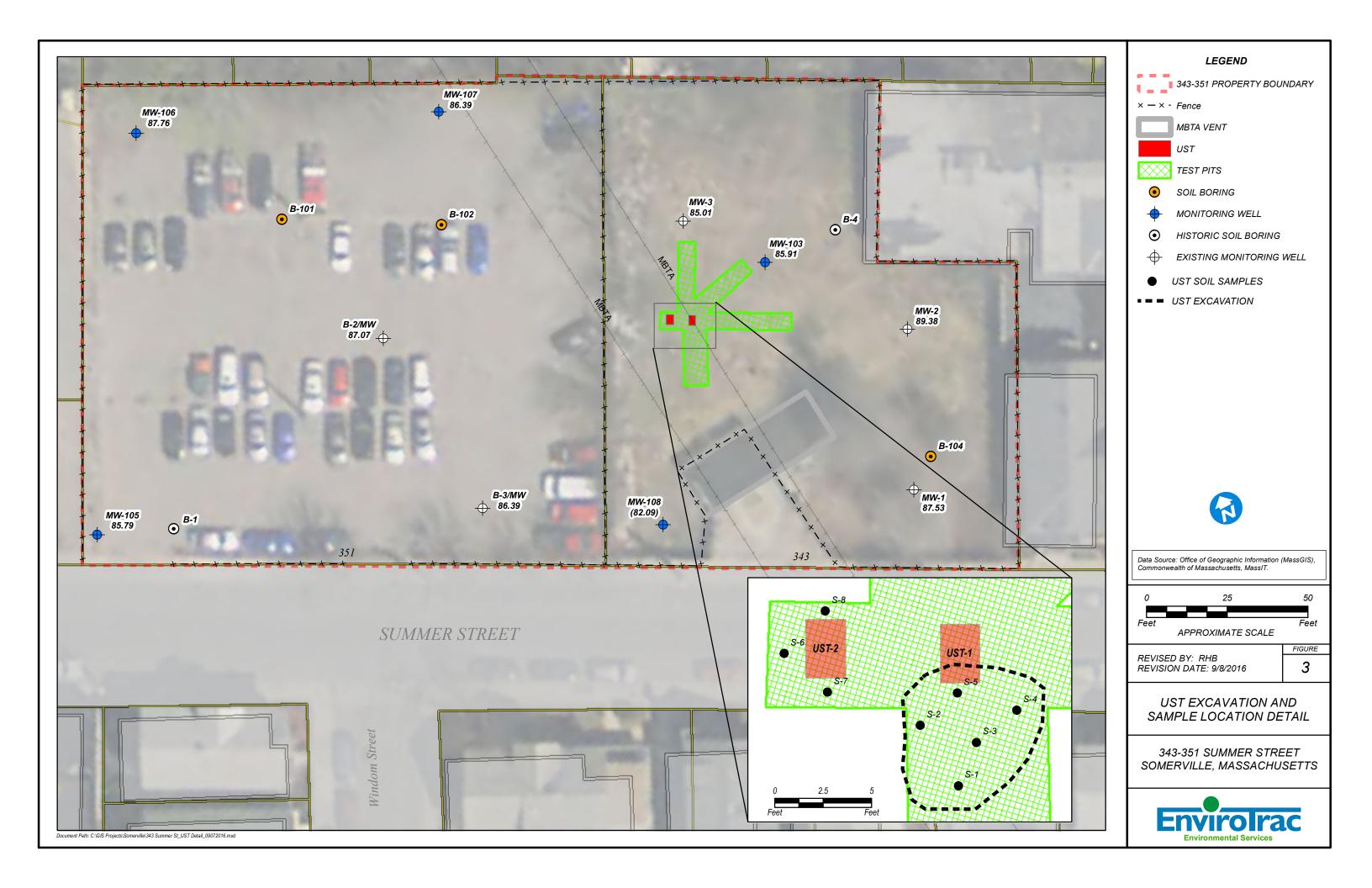

Based on the information presented herein, the following findings and/or conclusions are presented:

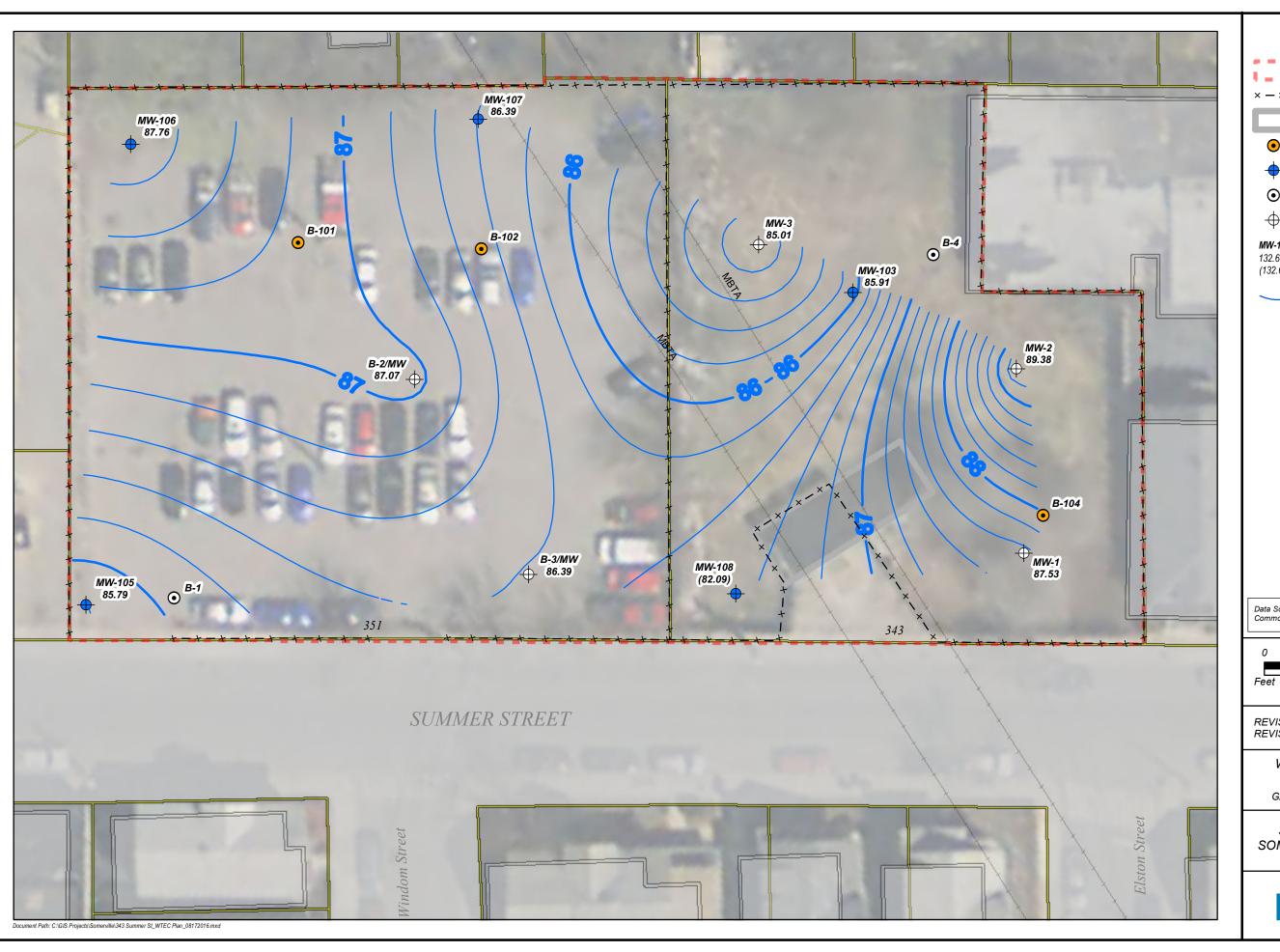
- Eight (8) soil borings were installed on the Subject Property identified as 343-351 Summer Street. Five (5) of the soil borings were completed as groundwater monitoring wells;
- Soil conditions encountered during the advancement of the soil borings were primarily sand, with traces of silt and gravel overlying a gray clay layer;
- Depth to groundwater ranged from 10.41 to 19.50 feet below grade on August 17, 2016;
- Two small (approximately 60 gallons) USTs were encountered and removed during test pitting activity at the parcel identified as 349 Summer Street.
- One of the tanks (Tank #1) was damaged during the test pitting activities, resulting in approximately 20-30 gallons of oily liquid being released to the soil in the vicinity of the tank. MassDEP-approved Immediate Response Actions (IRA) were completed on August 12, 2016, under Release Tracking Number 3-33735, including the removal of approximately 13 cubic yards of oil-impacted soil;
- Based on the UST removal, impacted soil excavation and post-excavation soil data collected to date, the release of oil from the UST has been remediated to meet the MCP requirements for closure of the release with a Permanent Solution that should be submitted on or before October 7, 2016 to meet MCP regulatory deadlines.
- Soil samples collected from the soil borings were analyzed for EPH with target analytes and the MCP 14 metals. Only lead in the composite soil sample collected from B-102 at a depth of 0-10 feet, and benzo(a)pyrene in the 0-10 feet composite sample B-104 exceeded applicable MCP S-1 Reportable Concentrations;
- The owner of the Subject Property has a regulatory obligation to notify MassDEP of the two reportable conditions, i.e. lead in soil at 431 mg/kg at B-104 and benzo(a)pyrene at 2.7 mg/kg at B-102, within 120 days of receipt of knowledge of such; and,
- Groundwater samples were collected from each of the five (5) newly installed monitoring wells and the five (5) existing monitoring wells and analyzed for VOC using EPA Method 8260C, EPH, VPH and dissolved MC P 14 Metals. None of the method analyte concentrations exceeded the applicable MCP GW-2 Reportable Concentrations.
- Forensic analysis of an oil sample collected from UST-1 suggests that the tank content characteristics are consistent with those of a used motor oil waste stream from gasoline powered combustion engines.

FIGURES

SOURCE: OFFICE OF GEOGRAPHIC INFORMATION (MassGIS), COMMONWEALTH OF MASSACHUSETTS, MassIT. USGS TOPOGRAPHIC MAPS: BOSTON NORTH AND BOSTON SOUTH, MA QUADRANGLES




www.EnviroTrac.com


LOCUS MAP

343 - 351 SUMMER STREET SOMERVILLE, MASSACHUSETTS

DRAWN BY	PROJECT	DATE	FIGURE
RHB	03.990202.00	9/1/2016	1

LEGEND

343-351 PROPERTY BOUNDARY

× - × · FENCE

MBTA VENT

SOIL BORING

MONITORING WELL

HISTORIC SOIL BORING EXISTING MONITORING WELL

MW-100 - WELL ID

132.68 - WATER TABLE ELEVATION (FT. MSL) (132.68) - WATER TABLE ELEVATION NOT USED LINE OF INTERPOLATED EQUAL WATER TABLE ELEVATION

Data Source: Office of Geographic Information (MassGIS), Commonwealth of Massachusetts, MassIT.

REVISED BY: RHB REVISION DATE: 9/8/2016

FIGURE

WATER TABLE ELEVATION CONTOUR PLAN

GAUGING DATE: AUGUST 17, 2016

343-351 SUMMER STREET SOMERVILLE, MASSACHUSETTS

TABLES

TABLE 1
SUMMARY OF SOIL BORING ANALYTICAL DATA

	Sample Date	August 8, 2016							MCP Reportable	
	Sample ID	B-101	B-102	B-103	B-104	MW-105	MW-106	MW-107	MW-108	Concentrations (mg/kg)
	Depth (feet)	0-10	0-10	13	0-10	13.5	9	13	13.5	RCS-1
	PID (ppmv)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	KC3-1
VOLATILE ORGANIC COMPOUND	S (mg/kg)									
Acetone		0.02	ND (0.012)		0.02	-				6
Benzene		< 0.00050	0.001		< 0.00042					2
Bromobenzene		< 0.0050	< 0.0061		< 0.0042					100
Bromochloromethane		< 0.0050	< 0.0061		< 0.0042					
Bromodichloromethane		< 0.0020	< 0.0024		< 0.0017					0.1
Bromoform		< 0.0020	< 0.0024		< 0.0017					0.1
Bromomethane		< 0.0020	< 0.0024		< 0.0017					0.5
2-Butanone (MEK)		< 0.010	< 0.012		< 0.0085					4
n-Butylbenzene		< 0.0050	< 0.0061		< 0.0042					
sec-Butylbenzene		< 0.0050	< 0.0061		< 0.0042					
tert-Butylbenzene		< 0.0050	< 0.0061		< 0.0042					100
Carbon disulfide		< 0.0050	< 0.0061		< 0.0042					100
Carbon tetrachloride		< 0.0020	< 0.0024		< 0.0017					5
Chlorobenzene		< 0.0020	< 0.0024		< 0.0017					1
Chloroethane		< 0.0050	< 0.0061		< 0.0042					100
Chloroform		< 0.0020	< 0.0024		< 0.0017					0.2
Chloromethane		< 0.0050	< 0.0061		< 0.0042					100
o-Chlorotoluene		< 0.0050	< 0.0061		< 0.0042					100
p-Chlorotoluene		< 0.0050	< 0.0061		< 0.0042					
Di-Isopropyl ether		< 0.0020	< 0.0024		< 0.0017					100
1,2-Dibromo-3-chloropropane		< 0.0050	< 0.0061		< 0.0042					10
Dibromochloromethane		< 0.0020	< 0.0024		< 0.0017					0.005
1,2-Dibromoethane		< 0.0020	< 0.0024		< 0.0017					0.1
1,2-Dichlorobenzene		< 0.0020	< 0.0024		< 0.0017					9
1,3-Dichlorobenzene		< 0.0020	< 0.0024		< 0.0017					3
1,4-Dichlorobenzene		< 0.0020	< 0.0024		< 0.0017					0.7
Dichlorodifluoromethane		< 0.0020	< 0.0024		< 0.0017					1,000
1,1-Dichloroethane		< 0.0020	< 0.0024		< 0.0017					0.4
1,2-Dichloroethane		< 0.0020	< 0.0024		< 0.0017					0.1
1,1-Dichloroethene		< 0.0020	< 0.0024		< 0.0017					3
cis-1,2-Dichloroethene		< 0.0020	< 0.0024		< 0.0017					0.1
trans-1,2-Dichloroethene		< 0.0020	< 0.0024		< 0.0017					1
1,2-Dichloropropane		< 0.0020	< 0.0024		< 0.0017					0.1
1,3-Dichloropropane		< 0.0050	< 0.0061		< 0.0042					500
2,2-Dichloropropane		< 0.0050	< 0.0061		< 0.0042					
1,1-Dichloropropene		< 0.0050	< 0.0061		< 0.0042					
cis-1,3-Dichloropropene		< 0.0020	< 0.0024		< 0.0017					0.01
trans-1,3-Dichloropropene		< 0.0020	< 0.0024		< 0.0017					0.01

NOTES:

-- is analysis not performed. NE is not established. ND is not detected. su is standard units. °F is degrees Farenheit. mg/kg is milligrams per kilogram. mg/L is milligrams per liter. PID is photoionization detector. ppmv is parts per million by volume. µmhos/cm is micromhos per centimeter.

VOC is volatile organic compound.

SVOC is semi-volatile organic compound.

<2.0 indicates not detected at or above the laboratory reporting limit of 2.0 mg/kg.

Analytes detected above the method reporting limit are in Bold.

Analytes detected above MCP Reportable Concentrations are in Red.

TABLE 1
SUMMARY OF SOIL BORING ANALYTICAL DATA

S	Sample Date				August	8, 2016				MCP Reportable
	Sample ID	B-101	B-102	B-103	B-104	MW-105	MW-106	MW-107	MW-108	Concentrations (mg/kg)
	Depth (feet)	0-10	0-10	13	0-10	13.5	9	13	13.5	RCS-1
	PID (ppmv)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	RC3-1
VOLATILE ORGANIC COMPOUNDS	(mg/kg)									
1,4-Dioxane		<0.13	<0.15		<0.11					0.2
Ethyl Ether		< 0.0050	< 0.0061		< 0.0042					100
Ethylbenzene		< 0.0020	< 0.0024		< 0.0017					40
Hexachlorobutadiene		< 0.0050	< 0.0061		< 0.0042					30
2-Hexanone		< 0.010	< 0.012		<0.0085					100
Isopropylbenzene		< 0.0050	< 0.0061		< 0.0042					1,000
p-Isopropyltoluene		< 0.0050	< 0.0061		< 0.0042					100
Methyl Tert Butyl Ether		< 0.0020	< 0.0024		< 0.0017					0.1
4-Methyl-2-pentanone (MIBK)		< 0.0050	< 0.0061		< 0.0042					0.4
Methylene bromide		< 0.0050	< 0.0061		< 0.0042					500
Methylene chloride		< 0.0020	< 0.0024		< 0.0017					0.1
Naphthalene		< 0.0050	< 0.0061		< 0.0042					4
n-Propylbenzene		< 0.0050	< 0.0061		< 0.0042					100
Styrene		< 0.0050	< 0.0061		< 0.0042					3
tert-Amyl Methyl Ether		< 0.0050	< 0.0061		< 0.0042					
tert-Butyl Ethyl Ether		< 0.0020	< 0.0024		< 0.0017					
1,1,1,2-Tetrachloroethane		< 0.0050	< 0.0061		< 0.0042					0.1
1,1,2,2-Tetrachloroethane		< 0.0020	< 0.0024		< 0.0017					0.005
Tetrachloroethene		< 0.0020	< 0.0024		< 0.0017					1
Tetrahydrofuran		< 0.010	< 0.012		< 0.0085					500
Toluene		< 0.0050	< 0.0061		< 0.0042					30
1,2,3-Trichlorobenzene		< 0.0050	< 0.0061		< 0.0042					
1,2,4-Trichlorobenzene		< 0.0050	< 0.0061		< 0.0042					2
1,1,1-Trichloroethane		< 0.0020	< 0.0024		< 0.0017					30
1,1,2-Trichloroethane		< 0.0020	< 0.0024		< 0.0017					0.1
Trichloroethene		< 0.0020	< 0.0024		< 0.0017					0.3
Trichlorofluoromethane		< 0.0020	< 0.0024		< 0.0017					1,000
1,2,3-Trichloropropane		< 0.0050	< 0.0061		< 0.0042					100
1,2,4-Trimethylbenzene		< 0.0050	< 0.0061		< 0.0042					1,000
1,3,5-Trimethylbenzene		< 0.0050	< 0.0061		< 0.0042					10
Vinyl chloride		< 0.0020	< 0.0024		< 0.0017					0.7
m,p-Xylene		< 0.0020	< 0.0024		< 0.0017					100
o-Xylene		< 0.0020	< 0.0024		< 0.0017					100
Xylene (total)		< 0.0020	< 0.0024		< 0.0017					100
Total VOCs										NE

NOTES:

-- is analysis not performed.
NE is not established.
ND is not detected.
su is standard units.

oF is degrees Farenheit.

mg/kg is milligrams per kilogram. mg/L is milligrams per liter. PID is photoionization detector. ppmv is parts per million by volume. µmhos/cm is micromhos per centimeter.

VOC is volatile organic compound.

SVOC is semi-volatile organic compound.

<2.0 indicates not detected at or above the laboratory reporting limit of 2.0 mg/kg.

Analytes detected above the method reporting limit are in Bold.

Analytes detected above MCP Reportable Concentrations are in Red.

Envirolrac Environmental Services

TABLE 1
SUMMARY OF SOIL BORING ANALYTICAL DATA

Sample Date	е			August	8, 2016				MCP Reportable
Sample II		B-102	B-103	B-104	MW-105	MW-106	MW-107	MW-108	Concentrations (mg/kg)
Depth (feet	0-10	0-10	13	0-10	13.5	9	13	13.5	RCS-1
PID (ppmv) BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.03-1
SEMI-VOLATILE ORGANIC COMPOUNDS (mg/k	J,								
Benzoic acid	< 0.51	< 0.62		<0.51					1,000
2-Chlorophenol	< 0.25	< 0.31		< 0.25					0.7
4-Chloro-3-methyl phenol	< 0.51	< 0.62		< 0.51					1,000
2,4-Dichlorophenol	< 0.51	< 0.62		< 0.51					0.7
2,4-Dimethylphenol	< 0.51	< 0.62		< 0.51					0.7
2,4-Dinitrophenol	< 0.51	< 0.62		< 0.51					3
2-Methylphenol	< 0.51	< 0.62		< 0.51					500
3&4-Methylphenol	< 0.51	< 0.62		< 0.51					500
2-Nitrophenol	< 0.51	< 0.62		< 0.51					100
4-Nitrophenol	< 0.51	< 0.62		< 0.51					100
Pentachlorophenol	< 0.51	< 0.62		< 0.51					3
Phenol	< 0.25	< 0.31		< 0.25					1
2,4,5-Trichlorophenol	< 0.51	< 0.62		< 0.51					4
2,4,6-Trichlorophenol	< 0.51	< 0.62		< 0.51					0.7
Acenaphthene	< 0.10	< 0.12		0.2					4
Acenaphthylene	0.1	0.3		0.2					1
Acetophenone	< 0.51	<0.62		< 0.51					1,000
Aniline	< 0.51	< 0.62		< 0.51					1,000
Anthracene	< 0.10	0.4		0.8					1,000
Benzo(a)anthracene	0.6	2.0		2.3					7
Benzo(a)pyrene	0.9	1.6		1.9					2
Benzo(b)fluoranthene	0.8	1.5		1.7					7
Benzo(g,h,i)perylene	0.7	1.1		1.1					1,000
Benzo(k)fluoranthene	0.7	1.6		1.6					70
4-Bromophenyl phenyl ether	< 0.25	< 0.31		< 0.25					100
Butyl benzyl phthalate	< 0.25	< 0.31		< 0.25					100
2-Chloronaphthalene	< 0.25	< 0.31		< 0.25					1,000
4-Chloroaniline	< 0.51	< 0.62		< 0.51					1
Chrysene	0.6	1.9		2.1					70
bis(2-Chloroethoxy)methane	< 0.25	< 0.31		< 0.25					500
bis(2-Chloroethyl)ether	< 0.25	< 0.31		< 0.25					0.7
bis(2-Chloroisopropyl)ether	< 0.25	< 0.31		< 0.25					0.7
1,2-Dichlorobenzene	< 0.25	< 0.31		< 0.25					9
1,2-Diphenylhydrazine	< 0.25	< 0.31		< 0.25					50
1,3-Dichlorobenzene	< 0.25	< 0.31		< 0.25					3
1,4-Dichlorobenzene	< 0.25	< 0.31		< 0.25					0.7
2,4-Dinitrotoluene	<0.51	< 0.62		< 0.51					0.7
2,6-Dinitrotoluene	< 0.51	< 0.62		< 0.51					100
3,3'-Dichlorobenzidine	< 0.51	<0.62		<0.51					3
Dibenzo(a,h)anthracene	0.2	0.3		0.3					0.7
Dibenzofuran	< 0.10	<0.12		0.2					100
Di-n-butyl phthalate	< 0.25	< 0.31		< 0.25					50
Di-n-octyl phthalate	< 0.25	< 0.31		< 0.25					1,000
<i>y</i> 1									

NOTES:

-- is analysis not performed.
NE is not established.
ND is not detected.
su is standard units.

or is degrees Farenheit.

mg/kg is milligrams per kilogram. mg/L is milligrams per liter. PID is photoionization detector. ppmv is parts per million by volume. µmhos/cm is micromhos per centimeter.

VOC is volatile organic compound.

SVOC is semi-volatile organic compound.

<2.0 indicates not detected at or above the laboratory reporting limit of 2.0 mg/kg.

Analytes detected above the method reporting limit are in Bold.

Analytes detected above MCP Reportable Concentrations are in Red.

TABLE 1
SUMMARY OF SOIL BORING ANALYTICAL DATA

Sample Date				August	8, 2016				MCP Reportable
Sample ID	B-101	B-102	B-103	B-104	MW-105	MW-106	MW-107	MW-108	Concentrations (mg/kg)
Depth (feet)	0-10	0-10	13	0-10	13.5	9	13	13.5	RCS-1
PID (ppmv)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	KC3-1
SEMI-VOLATILE ORGANIC COMPOUNDS (mg/kg)								
Diethyl phthalate	< 0.25	< 0.31		< 0.25					10
Dimethyl phthalate	< 0.25	< 0.31		< 0.25					0.7
bis(2-Ethylhexyl)phthalate	< 0.25	< 0.31		< 0.25					90
Fluoranthene	1.0	3.6		5.7					1,000
Fluorene	< 0.10	< 0.12		0.2					1,000
Hexachlorobenzene	< 0.25	< 0.31		< 0.25					0.7
Hexachlorobutadiene	< 0.25	< 0.31		< 0.25					30
Hexachlorocyclopentadiene	< 0.51	< 0.62		< 0.51					50
Hexachloroethane	< 0.25	< 0.31		< 0.25					0.7
Indeno(1,2,3-cd)pyrene	0.7	1.1		1.1					7
Isophorone	< 0.25	< 0.31		< 0.25					100
2-Methylnaphthalene	< 0.10	< 0.12		< 0.10					0.7
Naphthalene	<0.10	< 0.12		0.2					4
Nitrobenzene	< 0.25	< 0.31		< 0.25					500
N-Nitroso-di-n-propylamine	< 0.25	< 0.31		< 0.25					50
N-Nitrosodiphenylamine	< 0.25	< 0.31		< 0.25					100
Phenanthrene	0.3	1.3		3.4					10
Pyrene	1.1	3.5		5.4					1,000
1,2,4-Trichlorobenzene	< 0.25	< 0.31		< 0.25					2
POLYCHLORINATED BIPHENYLS (mg/kg)									
Aroclor 1016	< 0.034	< 0.040		< 0.033					1
Aroclor 1221	< 0.034	< 0.040		< 0.033					1
Aroclor 1232	< 0.034	< 0.040		< 0.033					1
Aroclor 1242	< 0.034	< 0.040		< 0.033					1
Aroclor 1248	< 0.034	< 0.040		< 0.033					1
Aroclor 1254	< 0.034	< 0.040		< 0.033					1
Aroclor 1260	< 0.034	< 0.040		< 0.033					1
Aroclor 1262	< 0.034	< 0.040		< 0.033					1
Aroclor 1268	< 0.034	< 0.040		< 0.033					1
Total PCBs	< 0.30	< 0.36		< 0.30	-				1

NOTES:

-- is analysis not performed.
NE is not established.
ND is not detected.
su is standard units.
°F is degrees Farenheit.

mg/kg is milligrams per kilogram. mg/L is milligrams per liter. PID is photoionization detector. ppmv is parts per million by volume. µmhos/cm is micromhos per centimeter. VOC is volatile organic compound. SVOC is semi-volatile organic compound.

<2.0 indicates not detected at or above the laboratory reporting limit of 2.0 mg/kg.

Analytes detected above the method reporting limit are in **Bold**.

Analytes detected above MCP Reportable Concentrations are in **Red**.

TABLE 1
SUMMARY OF SOIL BORING ANALYTICAL DATA

30	ample Date				August	8, 2016				MCP Reportable
	Sample ID	B-101	B-102	B-103	B-104	MW-105	MW-106	MW-107	MW-108	Concentrations (mg/kg)
Γ	Depth (feet)	0-10	0-10	13	0-10	13.5	9	13	13.5	RCS-1
	PID (ppmv)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	KC3-1
EXTRACTABLE PETROLEUM HYDRO	OCARBONS ((mg/kg)								
C9-C18 Aliphatics		<9.3	<11	<12	<9.2	<11	<9.7	<11	<11	1,000
C19-C36 Aliphatics		<19	<23	<23	21.4	<21	<19	<22	<22	3,000
C11-C22 Aromatics		26.7	<23	<23	63.3	<21	<19	<22	<22	1,000
Acenaphthene		< 0.46	< 0.57	<0.58	0.5	< 0.54	< 0.49	< 0.55	< 0.54	4
Acenaphthylene		< 0.46	< 0.57	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	1
Anthracene		< 0.46	< 0.57	< 0.58	1.1	< 0.54	< 0.49	< 0.55	< 0.54	1,000
Benzo(a)anthracene		0.8	1.2	< 0.58	3.1	< 0.54	< 0.49	< 0.55	< 0.54	7
Benzo(a)pyrene		1.3	1.0	< 0.58	2.7	< 0.54	< 0.49	< 0.55	< 0.54	2
Benzo(b)fluoranthene		2.2	1.93	< 0.58	4.7	< 0.54	< 0.49	< 0.55	< 0.54	7
Benzo(g,h,i)perylene		1.0	0.6	< 0.58	1.5	< 0.54	< 0.49	< 0.55	< 0.54	1,000
Benzo(k)fluoranthene		< 0.46	1.6	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	70
Chrysene		0.7	1.1	< 0.58	2.7	< 0.54	< 0.49	< 0.55	< 0.54	70
Dibenz(a,h)anthracene		< 0.46	< 0.57	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	0.7
Fluoranthene		1.1	1.7	< 0.58	6.6	< 0.54	< 0.49	< 0.55	< 0.54	1,000
Fluorene		< 0.46	< 0.57	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	1,000
Indeno(1,2,3-cd)pyrene		< 0.46	< 0.57	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	7
2-Methylnaphthalene		< 0.46	< 0.57	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	0.7
Naphthalene		< 0.46	< 0.57	< 0.58	< 0.46	< 0.54	< 0.49	< 0.55	< 0.54	4
Phenanthrene		< 0.46	0.6	< 0.58	4.2	< 0.54	< 0.49	< 0.55	< 0.54	10
Pyrene		1.1	1.5	< 0.58	5.1	< 0.54	< 0.49	< 0.55	< 0.54	1,000
VOLATILE PETROLEUM HYDROCAR	RBONS (ma/k	a)								
C5- C8 Aliphatics	Ī	<6.3	<8.6		<5.0					100
C9- C12 Aliphatics		<6.3	<8.6		< 5.0					1,000
C9- C10 Aromatics		<6.3	<8.6		< 5.0					100
Benzene		< 0.31	< 0.43		<0.25					2
Ethylbenzene		< 0.31	< 0.43		< 0.25					40
Methyl Tert Butyl Ether		< 0.063	< 0.086		< 0.050					0.1
Naphthalene		< 0.31	< 0.43		< 0.25					4
Toluene		< 0.31	< 0.43		< 0.25					30
m,p-Xylene		< 0.31	< 0.43		< 0.25					100
o-Xylene		< 0.31	< 0.43		< 0.25					100
Total Xylenes		< 0.62	<0.86		< 0.50					

NOTES:

-- is analysis not performed.
NE is not established.
ND is not detected.
su is standard units.

oF is degrees Farenheit.

mg/kg is milligrams per kilogram. mg/L is milligrams per liter. PID is photoionization detector. ppmv is parts per million by volume. µmhos/cm is micromhos per centimeter. VOC is volatile organic compound. SVOC is semi-volatile organic compound.

< 2.0 indicates not detected at or above the laboratory reporting limit of 2.0 mg/kg.

Analytes detected above the method reporting limit are in **Bold**.

Analytes detected above MCP Reportable Concentrations are in **Red**.

TABLE 1 SUMMARY OF SOIL BORING ANALYTICAL DATA

Sample Date				August	8, 2016				MCP Reportable
Sample ID	B-101	B-102	B-103	B-104	MW-105	MW-106	MW-107	MW-108	Concentrations (mg/kg)
Depth (feet)	0-10	0-10	13	0-10	13.5	9	13	13.5	RCS-1
PID (ppmv)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	NG3-1
TOTAL METALS (mg/kg)									
Antimony	<0.88	< 0.95	< 0.99	< 0.83	< 0.96	< 0.90	< 0.96	< 0.95	20
Arsenic	5.7	13.5	15.9	5.9	1.5	2.2	12.9	12	20
Barium	21.8	195	169	20.7	11.6	22.9	95.3	121	1,000
Beryllium	0.4	0.9	1.2	< 0.33	< 0.38	< 0.36	0.8	0.8	90
Cadmium	< 0.35	0.5	< 0.40	< 0.33	< 0.38	< 0.36	< 0.38	<0.38	70
Chromium	12.9	40.4	77.2	9.9	9.7	13.5	46.5	53.5	100
Lead	9.1	431	16.1	28.3	2.6	4.1	11.4	12.8	200
Mercury	< 0.033	3.0	< 0.038	< 0.031	< 0.033	< 0.034	< 0.035	< 0.035	20
Nickel	10.7	30.0	54.3	7.8	7.5	11.5	33.5	39.6	600
Selenium	<0.88	< 0.95	<2.0	< 0.83	< 0.96	< 0.90	< 0.96	< 0.95	400
Silver	< 0.44	< 0.48	< 0.99	< 0.41	< 0.48	< 0.45	< 0.48	< 0.48	100
Thallium	<0.88	< 0.95	< 0.99	<0.83	< 0.96	< 0.90	< 0.96	< 0.95	8
Vanadium	18.8	50.0	75.2	14.5	14.0	18.5	55.6	61.8	400
Zinc	25.9	245	96.2	35.4	25.9	28.3	68.5	78.0	1,000
GENERAL CHEMISTRY									
Ignitability (°F)	>230	>230		>230					NE
Specific Conductivity (µmhos/cm)	160	376		255					NE
Cyanide Reactivity (mg/kg)	<1.6	<1.9		<1.5					NE
Sulfide Reactivity (mg/kg)	<53	<62		<51					NE
pH	7.1	10.0		8.6					NE
Percent Solids (%)	94.4	80	74	97.6	84.1	87.2	79.9	79.4	NE

NOTES:

mg/kg is milligrams per kilogram. NE is not established.

ND is not detected.

PID is photoionization detector.

TABLE 2 SUMMARY OF UST AREA SOIL ANALYTICAL DATA

Sample Date					August 12, 2016					MCP Method 1 Soil
Sample ID	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	Stockpile	Standard (mg/kg)
Depth (feet)	8-9	8	8.5	7-8	7	5	6	6	NA	S-1 GW-2/GW-3
PID (ppmv)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	225.1	3-1 GVV-2/GVV-3
EXTRACTABLE PETROLEUM HYDROC	EXTRACTABLE PETROLEUM HYDROCARBONS (mg/kg)									
C9-C18 Aliphatics	<8.8	<9.5	11.7	<8.9	<9.1	13.4	10.3	<9.4	1,390	1,000
C19-C36 Aliphatics	76.6	<19	95.3	<18	64.9	488	380	226	5,850	3,000
C11-C22 Aromatics	142	<19	655	<18	161	294	171	128	2,350	1,000
Acenaphthene	0.6	<0.47	1.7	<0.44	0.7	<0.46	<0.46	<0.47	2.6	1,000
Acenaphthylene	< 0.44	< 0.47	2.5	<0.44	< 0.45	<0.46	< 0.46	<0.47	<0.50	600/10
Anthracene	1.7	< 0.47	11.9	<0.44	1.9	<0.46	< 0.46	< 0.47	0.9	1,000
Benzo(a)anthracene	5.2	< 0.47	28.1	<0.44	6.2	<0.46	< 0.46	0.7	3.3	7
Benzo(a)pyrene	4.8	< 0.47	19.2	<0.44	5.5	<0.46	< 0.46	0.9	<0.50	2
Benzo(b)fluoranthene	4.5	< 0.47	28.2	<0.44	5.9	<0.46	< 0.46	0.6	<0.50	7
Benzo(g,h,i)perylene	2.9	< 0.47	9.6	<0.44	3.4	<0.46	< 0.46	0.8	<0.50	1,000
Benzo(k)fluoranthene	3.9	< 0.47	10.8	<0.44	2.9	<0.46	< 0.46	0.6	<0.50	70
Chrysene	5.0	< 0.47	23.6	<0.44	5.5	<0.46	< 0.46	0.7	3.3	70
Dibenz(a,h)anthracene	1.0	< 0.47	3.8	<0.44	1.2	<0.46	< 0.46	< 0.47	<0.50	0.7
Fluoranthene	10.5	< 0.47	55.7	<0.44	12.5	<0.46	< 0.46	1.4	5.3	1,000
Fluorene	0.7	< 0.47	4.7	<0.44	0.8	<0.46	< 0.46	< 0.47	2.8	1,000
Indeno(1,2,3-cd)pyrene	2.9	< 0.47	11.4	<0.44	3.4	<0.46	< 0.46	< 0.47	<0.50	7
2-Methylnaphthalene	<0.44	< 0.47	< 0.47	<0.44	< 0.45	<0.46	< 0.46	< 0.47	41.4	80/300
Naphthalene	<0.44	< 0.47	< 0.47	<0.44	< 0.45	<0.46	< 0.46	< 0.47	24.1	20/500
Phenanthrene	6.7	< 0.47	44.5	<0.44	9.1	<0.46	< 0.46	0.8	4.6	10
Pyrene	7.9	< 0.47	39.2	<0.44	9.5	<0.46	<0.46	1.1	4.6	1,000
VOLATILE PETROLEUM HYDROCARBO	ONS (mg/kg)									
C5- C8 Aliphatics	<5.7	<5.4	<5.0	<5.1	<5.7	<5.8	<9.1	<5.2	118	100
C9- C12 Aliphatics	<5.7	<5.4	<5.0	<5.1	<5.7	<5.8	<9.1	<5.2	398	1,000
C9- C10 Aromatics	<5.7	<5.4	<5.0	<5.1	<5.7	<5.8	<9.1	<5.2	566	100
Benzene	<0.28	<0.27	<0.25	<0.26	<0.29	<0.29	<0.46	<0.26	0.4	40
Ethylbenzene	<0.28	< 0.27	< 0.25	<0.26	<0.29	<0.29	< 0.46	<0.26	13.6	500
Methyl Tert Butyl Ether	< 0.057	< 0.054	< 0.050	<0.051	< 0.057	<0.058	< 0.091	< 0.052	< 0.063	100
Naphthalene	<0.28	<0.27	<0.25	<0.26	<0.29	<0.29	<0.46	<0.26	23.3	20/500
Toluene	<0.28	<0.27	<0.25	<0.26	<0.29	<0.29	<0.46	<0.26	11.0	500
Total Xylenes	<0.56	<0.54	<0.50	<0.52	<0.58	<0.58	<0.92	<0.52	63.1	100/500

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

BDL is below the instrument detection limit of 0.5 ppmv.

<2.0 indicates not detected at or above the laboratory reporting limit of 2.0 mg/kg.

ppmv is parts per million by volume. Analytes detected above the method reporting limit are in **Bold**.

Analytes detected above MCP Method 1 Soil Standards are in Red.

Maggiore Somerville 343-351 Summer Street Somerville, Massachusetts

Sample Date	August 12, 2016	MCP Method 1 Soil Standard
Sample ID	Stockpile	(mg/kg)
Depth (feet)	NA	0.4.000.0000
PID (ppmv)	225.1	S-1-GW-2/GW-3
VOLATILE ORGANIC COMPOUNDS (mg/kg)		
Acetone	<3.3	50/400
Benzene	0.5	40
Bromobenzene	<1.7	NE
Bromochloromethane	<1.7	NE
Bromodichloromethane	<0.66	0.13
Bromoform	<0.66	1/300
Bromomethane	<0.66	0.5/30
2-Butanone (MEK)	<3.3	50/400
n-Butylbenzene	8.8	NE
sec-Butylbenzene	2.6	NE
tert-Butylbenzene	<1.7	NE
Carbon disulfide	<1.7	NE
Carbon tetrachloride	<0.66	5/30
Chlorobenzene	<0.66	3/100
Chloroethane	<1.7	NE
Chloroform	<0.66	3/100
Chloromethane	<1.7	NE
o-Chlorotoluene	<1.7	NE
p-Chlorotoluene	<1.7	NE
Di-Isopropyl ether	<0.66	NE
1,2-Dibromo-3-chloropropane	<1.7	NE
Dibromochloromethane	<0.66	0.03/20
1,2-Dibromoethane	<0.66	NE
1,2-Dichlorobenzene	0.9	100/300
1,3-Dichlorobenzene	<0.66	100
1,4-Dichlorobenzene	<0.66	1/80
Dichlorodifluoromethane	<0.66	NE
1,1-Dichloroethane	<0.66	9/500
1,2-Dichloroethane	<0.66	0.1/20
1,1-Dichloroethene	<0.66	40/500
cis-1,2-Dichloroethene	<0.66	0.1/100
trans-1,2-Dichloroethene	<0.66	1/500
1,2-Dichloropropane	<0.66	0.1/30
1,3-Dichloropropane	<1.7	NE
2,2-Dichloropropane	<1.7	NE
1,1-Dichloropropene	<1.7	NE
cis-1,3-Dichloropropene	<0.66	0.4/20
trans-1,3-Dichloropropene	<0.66	NE

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

NE is not established. ppmv is parts per million by volume.

Analytes detected above the method reporting limit are in **Bold**. Analytes detected above MCP Method 1 Soil Standards are in **Red**.

Maggiore Somerville 343-351 Summer Street Somerville, Massachusetts

Sample Date	August 12, 2016	MCP Method 1 Soil Standard
Sample ID	Stockpile	(mg/kg)
Depth (feet)	NA	S-1-GW-2/GW-3
PID (ppmv)	225.1	
VOLATILE ORGANIC COMPOUNDS (mg/kg)		
1,4-Dioxane	<41	6/20
Ethyl Ether	<1.7	NE
Ethylbenzene	13.1	500
Hexachlorobutadiene	<1.7	30
2-Hexanone	<3.3	NE
Isopropylbenzene	3.5	NE
p-Isopropyltoluene	2.2	NE
Methyl Tert Butyl Ether	<0.66	100
4-Methyl-2-pentanone (MIBK)	<1.7	50/400
Methylene bromide	<1.7	NE
Methylene chloride	<0.66	NE
Naphthalene	48.7	20/500
n-Propylbenzene	13.5	NE
Styrene	1.9	4/70
tert-Amyl Methyl Ether	<1.7	NE
tert-Butyl Ethyl Ether	<0.66	NE
1,1,1,2-Tetrachloroethane	<1.7	0.1/80
1,1,2,2-Tetrachloroethane	<0.66	0.02/10
Tetrachloroethene	<0.66	10/30
Tetrahydrofuran	<3.3	NE
Toluene	13.5	500
1,2,3-Trichlorobenzene	<1.7	NE
1,2,4-Trichlorobenzene	<1.7	6/700
1,1,1-Trichloroethane	<0.66	500
1,1,2-Trichloroethane	<0.66	2/40
Trichloroethene	<0.66	0.3/30
Trichlorofluoromethane	<0.66	NE
1,2,3-Trichloropropane	<1.7	NE
1,2,4-Trimethylbenzene	127	NE
1,3,5-Trimethylbenzene	29.9	NE
Vinyl chloride	<0.66	0.7/1
m,p-Xylene	61	100/500
o-Xylene	30	100/500
Xylene (total)	91	100/500
Total VOCs	447.1	NE

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

NE is not established. ppmv is parts per million by volume.

Analytes detected above the method reporting limit are in **Bold**.

Analytes detected above MCP Method 1 Soil Standards are in **Red**.

Maggiore Somerville 343-351 Summer Street Somerville, Massachusetts

Sample Da Sample	-	MCP Method 1 Soil Standard (mg/kg)
Depth (fe	· ·	
PID (ppn	-	S-1-GW-2/GW-3
SEMI-VOLATILE ORGANIC COMPOUNDS (mg		
Benzoic acid	<16	NE
2-Chlorophenol	<8.0	100
4-Chloro-3-methyl phenol	<16	NE
2,4-Dichlorophenol	<16	NE
2,4-Dimethylphenol	<16	100/500
2,4-Dinitrophenol	<16	50
2-Methylphenol	<16	NE
3&4-Methylphenol	<16	NE
2-Nitrophenol	<16	NE
4-Nitrophenol	<16	NE
Pentachlorophenol	<16	3
Phenol	<8.0	50/20
2,4,5-Trichlorophenol	<16	1,000/600
2,4,6-Trichlorophenol	<16	20
Acenaphthene	<3.2	1000
Acenaphthylene	<3.2	600/10
Acetophenone	<16	NE
Aniline	<16	NE
Anthracene	5.4	1,000
Benzo(a)anthracene	14.9	7
Benzo(a)pyrene	13.8	2
Benzo(b)fluoranthene	11.7	7
Benzo(g,h,i)perylene	9.2	1,000
Benzo(k)fluoranthene	10.9	70
4-Bromophenyl phenyl ether	<8.0	NE
Butyl benzyl phthalate	<8.0	NE
2-Chloronaphthalene	<8.0	NE
4-Chloroaniline	<16	7/3
Chrysene	13.8	70
bis(2-Chloroethoxy)methane	<8.0	NE
bis(2-Chloroethyl)ether	<8.0	NE
bis(2-Chloroisopropyl)ether	<8.0	NE
1,2-Dichlorobenzene	<8.0	100/300
1,2-Diphenylhydrazine	<8.0	NE
1,3-Dichlorobenzene	<8.0	100
1,4-Dichlorobenzene	<8.0	1/80
2,4-Dinitrotoluene	<16	2
2,6-Dinitrotoluene	<16	NE
3,3'-Dichlorobenzidine	<16	3
Dibenzo(a,h)anthracene	3.5	0.7
Dibenzofuran	<3.2	NE
Di-n-butyl phthalate	<8.0	NE
Di-n-octyl phthalate	<8.0	NE

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

NE is not established. ppmv is parts per million by volume.

Analytes detected above the method reporting limit are in **Bold**. Analytes detected above MCP Method 1 Soil Standards are in **Red**.

Maggiore Somerville 343-351 Summer Street Somerville, Massachusetts

Sample Date Sample ID	August 12, 2016 Stockpile	MCP Method 1 Soil Standard (mg/kg)
Depth (feet)	NA NA	C 1 OM 0/OM 2
PID (ppmv)	225.1	S-1-GW-2/GW-3
SEMI-VOLATILE ORGANIC COMPOUNDS (mg/kg)	
Diethyl phthalate	<8.0	200/300
Dimethyl phthalate	<8.0	50/600
bis(2-Ethylhexyl)phthalate	<8.0	NE
Fluoranthene	33.8	1,000
Fluorene	<3.2	1,000
Hexachlorobenzene	<8.0	0.7
Hexachlorobutadiene	<8.0	30
Hexachlorocyclopentadiene	<16	NE
Hexachloroethane	<8.0	3/50
Indeno(1,2,3-cd)pyrene	9.6	7
Isophorone	<8.0	NE
2-Methylnaphthalene	59.4	80/300
Naphthalene	46.3	20/500
Nitrobenzene	<8.0	NE
N-Nitroso-di-n-propylamine	<8.0	NE
N-Nitrosodiphenylamine	<8.0	NE
Phenanthrene	18.9	500
Pyrene	28	1,000
1,2,4-Trichlorobenzene	<8.0	6/700
POLYCHLORINATED BIPHENYLS (mg/kg)		
Aroclor 1016	< 0.035	1
Aroclor 1221	< 0.035	1
Aroclor 1232	< 0.035	1
Aroclor 1242	< 0.035	1
Aroclor 1248	< 0.035	1
Aroclor 1254	< 0.035	1
Aroclor 1260	0.1	1
Aroclor 1262	< 0.035	1
Aroclor 1268	< 0.035	1
Total PCBs	0.1	1

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

NE is not established. ppmv is parts per million by volume.

Analytes detected above the method reporting limit are in **Bold**.

Analytes detected above MCP Method 1 Soil Standards are in **Red**.

Maggiore Somerville 343-351 Summer Street Somerville, Massachusetts

Sample Date Sample ID	August 12, 2016 Stockpile	MCP Method 1 Soil Standard (mg/kg)
Depth (feet)	NA	. 3 3,
PID (ppmv)	225.1	S-1-GW-2/GW-3
EXTRACTABLE PETROLEUM HYDROCARBONS		
C9-C18 Aliphatics	1,390	1,000
C19-C36 Aliphatics	5,850	3,000
C11-C22 Aromatics	2,350	1,000
Acenaphthene	2.6	1,000
Acenaphthylene	<0.50	600/10
Anthracene	0.9	1,000
Benzo(a)anthracene	3.3	7
Benzo(a)pyrene	< 0.50	2
Benzo(b)fluoranthene	<0.50	7
Benzo(g,h,i)perylene	<0.50	1,000
Benzo(k)fluoranthene	<0.50	70
Chrysene	3.3	70
Dibenz(a,h)anthracene	<0.50	0.7
Fluoranthene	5.3	1,000
Fluorene	2.8	1,000
Indeno(1,2,3-cd)pyrene	<0.50	7
2-Methylnaphthalene	41.4	80/300
Naphthalene	24.1	20/500
Phenanthrene	4.6	10
Pyrene	4.6	1,000
VOLATILE PETROLEUM HYDROCARBONS (mg/k	(g)	
C5- C8 Aliphatics	118	100
C9- C12 Aliphatics	398	1,000
C9- C10 Aromatics	566	100
Benzene	0.4	40
Ethylbenzene	13.6	500
Methyl Tert Butyl Ether	< 0.063	100
Naphthalene	23.3	20/500
Toluene	11.0	500
m,p-Xylene	39.4	100/500
o-Xylene	23.7	100/500
Total Xylenes	63.1	100/500

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

NE is not established. ppmv is parts per million by volume.

Analytes detected above the method reporting limit are in **Bold**. Analytes detected above MCP Method 1 Soil Standards are in **Red**.

Maggiore Somerville 343-351 Summer Street Somerville, Massachusetts

Sample Da Sample Depth (fer	ID Stockpile	MCP Method 1 Soil Standard (mg/kg)
PID (ppm		S-1-GW-2/GW-3
TOTAL METALS (mg/kg)	_	
Antimony	<0.88	20
Arsenic	12.0	20
Barium	100	1,000
Beryllium	0.6	90
Cadmium	0.7	70
Chromium	22.6	100
Lead	350	200
Mercury	< 0.032	20
Nickel	16.1	600
Selenium	<0.88	400
Silver	<0.88	100
Thallium	<0.88	8
Vanadium	32.8	400
Zinc	186	1,000
GENERAL CHEMISTRY	•	
Ignitability (°F)	>230	NE
Specific Conductivity (µmhos/cm)	260	NE
Cyanide Reactivity (mg/kg)	<1.6	NE
Sulfide Reactivity (mg/kg)	<54	NE
pH (su)	7.8	NE
Percent Solids (%)	90.9	NE

NOTES:

mg/kg is milligrams per kilogram. PID is photoionization detector.

NE is not established. ppmv is parts per million by volume.

su is standard units. µmhos/cm is micromhos per centimeter.

°F is degrees Farenheit.

Analytes detected above the method reporting limit are in **Bold**. Analytes detected above MCP Method 1 Soil Standards are in **Red**.

TABLE 4 SUMMARY OF GROUNDWATER ANALYICAL RESULTS

Sample Date					August	17, 2016					MCP Reportable	MCDA	lethod 1
Monitoring Well ID	MW-1	MW-2	MW-3	MW-103	MW-105	MW-106	MW-107	MW-108	B-2/MW	B-3/MW	Concentrations	_	er Standards
Depth to Groundwater (feet)	14.30	12.60	16.58	16.81	11.31	10.41	13.17	19.50	12.22	11.97	(μg/L)		g/L)
Screen Interval BGS (feet)	9-19	9-19	9-19	10-20	10-20	8-18	10-20	10-20	UNK	UNK			• ,
Depth of Well (feet)	22	22	22	20	20	18	20	20	15	15	RCGW-2	GW-2	GW-3
VOLATILE ORGANIC COMPOUNDS by													
Acetone	<10	<10	<10	14.5	<10	<10	<10		<10	<10	50,000	50,000	50,000
Benzene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	< 0.50	1,000	1,000	10,000
Bromobenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10,000	NE	NE
Bromochloromethane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
Bromodichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	6	6	50,000
Bromoform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	700	700	50,000
Bromomethane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	7	7	800
2-Butanone (MEK)	<10	<10	<10	<10	<10	<10	<10		<10	<10	50,000	50,000	50,000
n-Butylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
sec-Butylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
tert-Butylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
Carbon disulfide	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10,000	NE	NE
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	2	2	5,000
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	200	200	1,000
Chloroethane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	10,000	NE	NE
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	50	50	20,000
Chloromethane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	10,000	NE	NE
o-Chlorotoluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10,000	NE	NE
p-Chlorotoluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
Di-Isopropyl ether	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	10,000	NE	NE
1,2-Dibromo-3-chloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	1,000	NE	NE
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	20	20	50,000
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	2	2	50,000
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	2,000	8,000	2,000
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	6,000	6,000	50,000
1,4-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	60	60	8,000
Dichlorodifluoromethane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	100,000	NE	NE
1,1-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	2,000	2,000	20,000
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	5	5	20,000
1,1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	80	80	30,000
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	20	20	50,000
trans-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	80	80	50,000
1,2-Dichloropropane	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	3	3	50,000
1,3-Dichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	50,000	NE	NE
2,2-Dichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
1,1-Dichloropropene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
cis-1,3-Dichloropropene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	5	NE	NE
trans-1,3-Dichloropropene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	5	NE	NE

NOTES:

-- is not applicable or not analyzed.

μg/L is micrograms per liter. NE is not established. BGS is below ground surface.

MTBE is methyl tert butyl ether.

<2.0 is not detected at or above the laboratory reporting limit of 2.0 μ g/L. Analytes detected above the method reporting limit are in **Bold**.

Analytes detected above applicable MCP groundwater standards are in Red.

TABLE 4 SUMMARY OF GROUNDWATER ANALYICAL RESULTS

Sample Date					August	17, 2016					MOD Domostoli	MODIM	lether d
Monitoring Well ID	MW-1	MW-2	MW-3	MW-103	MW-105	MW-106	MW-107	MW-108	B-2/MW	B-3/MW	MCP Reportable Concentrations		lethod 1 er Standards
Depth to Groundwater (feet)	14.30	12.60	16.58	16.81	11.31	10.41	13.17	19.50	12.22	11.97	(μg/L)		g/L)
Screen Interval BGS (feet)	9-19	9-19	9-19	10-20	10-20	8-18	10-20	10-20	UNK	UNK		(μ)	
Depth of Well (feet)	22	22	22	20	20	18	20	20	15	15	RCGW-2	GW-2	GW-3
1,4-Dioxane	<25	<25	<25	<25	<25	<25	<25		<25	<25	6,000	6,000	50,000
Ethyl Ether	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10,000	NE	NE
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	5,000	20,000	5,000
Hexachlorobutadiene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	50	50	3,000
2-Hexanone	<10	<10	<10	<10	<10	<10	<10		<10	<10	10,000	NE	NE
Isopropylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	100,000	NE	NE
p-Isopropyltoluene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
Methyl Tert Butyl Ether	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	5,000	50,000	50,000
4-Methyl-2-pentanone (MIBK)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	50,000	50,000	50,000
Methylene bromide	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	50,000	NE	NE
Methylene chloride	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	2,000	2,000	50,000
Naphthalene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	700	700	20,000
n-Propylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10,000	NE	NE
Styrene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	100	100	6,000
tert-Amyl Methyl Ether	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	NE	NE	NE
tert-Butyl Ethyl Ether	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	NE	NE	NE
1,1,1,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	100	10	50,000
1,1,2,2-Tetrachloroethane	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50		< 0.50	< 0.50	9	9	50,000
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	50	50	30,000
Tetrahydrofuran	<10	<10	<10	<10	<10	<10	<10		<10	<10	50,000	NE	NE
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	40,000	50,000	40,000
1,2,3-Trichlorobenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	NE	NE	NE
1,2,4-Trichlorobenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	200	200	50,000
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	4,000	4,000	20,000
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	900	900	50,000
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	5	5	5,000
Trichlorofluoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	100,000	NE	NE
1,2,3-Trichloropropane	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10,000	NE	NE
1,2,4-Trimethylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	100,000	NE	NE
1,3,5-Trimethylbenzene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	1,000	NE	NE
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	2	2	50,000
m,p-Xylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	3,000	3,000	5,000
o-Xylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	3,000	3,000	5,000
Xylene (total)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	3,000	3,000	5,000

NOTES:

-- is not applicable or not analyzed. μg/L is micrograms per liter. NE is not established. BGS is below ground surface.

MTBE is methyl tert butyl ether.
<2.0 is not detected at or above the laboratory reporting limit of 2.0 µg/L.
Analytes detected above the method reporting limit are in **Bold**.
Analytes detected above applicable MCP groundwater standards are in **Red**.

TABLE 4
SUMMARY OF GROUNDWATER ANALYICAL RESULTS

Sample Date					August 1	17, 2016					MCP Reportable	MODIM	lethod 1
Monitoring Well ID	MW-1	MW-2	MW-3	MW-103	MW-105	MW-106	MW-107	MW-108	B-2/MW	B-3/MW	Concentrations	-	er Standards
Depth to Groundwater (feet)	14.30	12.60	16.58	16.81	11.31	10.41	13.17	19.50	12.22	11.97	Concentrations (μg/L)		g/L)
Screen Interval BGS (feet)	9-19	9-19	9-19	10-20	10-20	8-18	10-20	10-20	UNK	UNK			•
Depth of Well (feet)	22	22	22	20	20	18	20	20	15	15	RCGW-2	GW-2	GW-3
VOLATILE PETROLEUM HYDROCARE													
C5-C8 Aliphatics	<50	<50	<50	<50	<50	<50	<50		<50	<50	3,000	3,000	50,000
C9-C12 Aliphatics	<50	<50	<50	<50	<50	<50	<50		<50	<50	5,000	5,000	50,000
C9-C10 Aromatics	<50	<50	<50	<50	<50	<50	<50		<50	<50	4,000	4,000	50,000
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	1,000	1,000	10,000
Ethylbenzene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	5,000	20,000	5,000
MTBE	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	5,000	50,000	50,000
Naphthalene	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0		<3.0	<3.0	700	700	20,000
Toluene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	40,000	50,000	40,000
Xylenes (total)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		<4.0	<4.0	3,000	3,000	5,000
EXTRACTABLE PETROLEUM HYDRO	CARBONS (µg/L)										_		
C9-C18 Aliphatics	<110	<110	<120	<120	<110	<120	<130	<100	<110	<110	5,000	5,000	50,000
C19-C36 Aliphatics	<110	362	<120	<120	<110	<120	<130	<100	<110	<110	50,000	NE	50,000
C11-C22 Aromatics	<110	<110	<120	<120	<110	<120	<130	<100	<110	<110	5,000	50,000	5,000
Acenaphthene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	600	NE	10,000
Acenaphthylene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	40	10,000	40
Anthracene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	30	NE	30
Benzo(a)anthracene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	1,000	NE	1,000
Benzo(a)pyrene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	500	NE	500
Benzo(b)fluoranthene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	400	NE	400
Benzo(g,h,i)perylene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	20	NE	20
Benzo(k)fluoranthene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	100	NE	100
Chrysene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	70	NE	70
Dibenz(a,h)anthracene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	40	NE	40
Fluoranthene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	200	NE	200
Fluorene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	40	NE	40
Indeno(1,2,3-cd)pyrene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	100	NE	100
2-Methylnaphthalene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	2,000	2,000	20,000
Naphthalene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	700	700	20,000
Phenanthrene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	10,000	NE	10,000
Pyrene	<5.5	<5.6	<5.9	<6.1	<5.6	<5.8	<6.3	<5.1	<5.6	<5.6	20	NE	20
METALS (μg/L)													
Antimony	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0		<6.0	<6.0	8,000	NE	8,000
Arsenic	29.5	4.4	<4.0	24.3	<4.0	6	<4.0		<4.0	5.7	900	NE	900
Barium	<50	<50	<50	<50	<50	<50	<50		<50	<50	50,000	NE	50,000
Beryllium	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		<4.0	<4.0	200	NE	200
Cadmium	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		<4.0	<4.0	4	NE	4
Chromium	<10	<10	<10	<10	<10	<10	<10		<10	<10	300	NE	300
Lead	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	10	NE	10
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	20	NE	20
Nickel	<40	<40	<40	<40	<40	<40	<40		<40	<40	200	NE	200
Selenium	<10	<10	<10	<10	11.6	<10	11.3		<10	<10	100	NE	100
Silver	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	7	NE	7
Thallium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	3,000	NE	3,000
Vanadium	<10	<10	<10	<10	<10	<10	<10		<10	<10	4,000	NE	4,000
Zinc	<20	<20	<20	<20	26.1	<20	<20		<20	<20	900	NE	900

NOTES:

-- is not applicable or not analyzed. μg/L is micrograms per liter. NE is not established. BGS is below ground surface. MTBE is methyl tert butyl ether.

2.0 is not detected at or above the laboratory reporting limit of 2.0 µg/L. Analytes detected above the method reporting limit are in Bold. Analytes detected above applicable MCP groundwater standards are in Red.

TABLE 5
SUMMARY OF MONITORING WELL GAUGING DATA

Monitoring Well ID	Gauging Date	Top of Casing Elevation ¹ (feet)	Depth to Water (feet)	Depth to Bottom (feet)	Water Table Elevation (feet)	
MW-1	8/8/2016 8/17/2016	101.83	 14.30	 22.05	87.53	
MW-2	8/8/2016 8/17/2016	101.98	 12.60	 22.21	89.38	
MW-3	8/8/2016 8/17/2016	101.59	 16.58	 22	85.01	
MW-103	8/8/2016 8/17/2016	102.72	20.12 16.81	23.13 23.25	85.91	
MW-108	8/8/2016 8/17/2016	101.59	21.00 19.50	22.85 22.70	82.09	
B-2/MW	8/8/2016 8/17/2016	99.29	 12.22	 14.85	87.07	
B-3/MW	8/8/2016 8/17/2016	98.36	 11.97	 14.35	86.39	
MW-105	8/8/2016 8/17/2016	97.10	11.27 11.31	20.04 19.71	85.79	
MW-106	8/8/2016 8/17/2016	98.17	12.90 10.41	17.80 17.80	87.76	
MW-107	8/8/2016 8/17/2016	99.56	17.81 13.17	19.70 19.82	86.39	

NOTES:

Latest Top of Casing survey performed was on August 17, 2016.

⁻⁻ is not measured

¹Based on assumed benchmark = 100.00' Northeast corner of MBTA Vent Pad.

TABLE 6
SUMMARY OF GROUNDWATER GEOCHEMICAL DATA

		Depth to			FIELD PARA	METERS	
Well ID	Date	Groundwater (feet)	Dissolved Oxygen (mg/L)	Temperature (°C)	рН	Oxidation/Reduction Potential (mV)	Conductivity (µS)
MW-1	8/17/2016	14.30	0.49	17.5	6.84	100.3	622
MW-2	8/17/2016	12.60	1.12	16.1	7.47	83.6	639
MW-3	8/17/2016	16.58	1.50	16.1	6.74	87.2	670
MW-103	8/17/2016	16.81	0.42	18.3	8.31	-238.1	740
MW-108	8/17/2016	19.50					
B-2/MW	8/17/2016	12.22	2.21	20.4	6.48	70.1	1,034
B-3/MW	8/17/2016	11.97	1.08	19.2	6.22	13.0	1,159
MW-105	8/17/2016	11.31	0.43	18.7	6.75	-170.1	1,176
MW-106	8/17/2016	10.41	0.31	16.5	7.09	-259.0	754
MW-107	8/17/2016	13.17	0.07	17.9	7.71	-360.4	1,302

NOTES:

-- is not measured mV is millivolts μS is microsiemens mg/L is milligrams per liter

°C is degrees Celsius

 $<\!\!2.0$ is not detected at or above the laboratory reporting limit of 2.0 mg/L

Field parameters measured using a YSI 556 MPS meter

APPENDIX A SOIL BORING LOGS

APPENDIX B SOIL ANALYTICAL REPORTS

APPENDIX C GROUNDWATER ANALYTICAL REPORT

